| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neissex | Unicode version | ||
| Description: For any neighborhood |
| Ref | Expression |
|---|---|
| neissex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neii2 14823 |
. 2
| |
| 2 | opnneiss 14832 |
. . . . 5
| |
| 3 | 2 | 3expb 1228 |
. . . 4
|
| 4 | 3 | adantrrr 487 |
. . 3
|
| 5 | 4 | adantlr 477 |
. 2
|
| 6 | simplll 533 |
. . . . . 6
| |
| 7 | simpll 527 |
. . . . . . . . . 10
| |
| 8 | simpr 110 |
. . . . . . . . . 10
| |
| 9 | eqid 2229 |
. . . . . . . . . . . 12
| |
| 10 | 9 | neii1 14821 |
. . . . . . . . . . 11
|
| 11 | 10 | adantr 276 |
. . . . . . . . . 10
|
| 12 | 9 | opnssneib 14830 |
. . . . . . . . . 10
|
| 13 | 7, 8, 11, 12 | syl3anc 1271 |
. . . . . . . . 9
|
| 14 | 13 | biimpa 296 |
. . . . . . . 8
|
| 15 | 14 | anasss 399 |
. . . . . . 7
|
| 16 | 15 | adantr 276 |
. . . . . 6
|
| 17 | simpr 110 |
. . . . . 6
| |
| 18 | neiss 14824 |
. . . . . 6
| |
| 19 | 6, 16, 17, 18 | syl3anc 1271 |
. . . . 5
|
| 20 | 19 | ex 115 |
. . . 4
|
| 21 | 20 | adantrrl 486 |
. . 3
|
| 22 | 21 | alrimiv 1920 |
. 2
|
| 23 | 1, 5, 22 | reximssdv 2634 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-top 14672 df-nei 14813 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |