ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neissex Unicode version

Theorem neissex 12959
Description: For any neighborhood  N of  S, there is a neighborhood  x of  S such that  N is a neighborhood of all subsets of  x. Generalization to subsets of Property Viv of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
Assertion
Ref Expression
neissex  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. x  e.  (
( nei `  J
) `  S ) A. y ( y  C_  x  ->  N  e.  ( ( nei `  J
) `  y )
) )
Distinct variable groups:    x, y, J   
x, N, y    x, S, y

Proof of Theorem neissex
StepHypRef Expression
1 neii2 12943 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. x  e.  J  ( S  C_  x  /\  x  C_  N ) )
2 opnneiss 12952 . . . . 5  |-  ( ( J  e.  Top  /\  x  e.  J  /\  S  C_  x )  ->  x  e.  ( ( nei `  J ) `  S ) )
323expb 1199 . . . 4  |-  ( ( J  e.  Top  /\  ( x  e.  J  /\  S  C_  x ) )  ->  x  e.  ( ( nei `  J
) `  S )
)
43adantrrr 484 . . 3  |-  ( ( J  e.  Top  /\  ( x  e.  J  /\  ( S  C_  x  /\  x  C_  N ) ) )  ->  x  e.  ( ( nei `  J
) `  S )
)
54adantlr 474 . 2  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( x  e.  J  /\  ( S 
C_  x  /\  x  C_  N ) ) )  ->  x  e.  ( ( nei `  J
) `  S )
)
6 simplll 528 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  N  e.  ( ( nei `  J
) `  S )
)  /\  ( x  e.  J  /\  x  C_  N ) )  /\  y  C_  x )  ->  J  e.  Top )
7 simpll 524 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  x  e.  J
)  ->  J  e.  Top )
8 simpr 109 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  x  e.  J
)  ->  x  e.  J )
9 eqid 2170 . . . . . . . . . . . 12  |-  U. J  =  U. J
109neii1 12941 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  N  C_  U. J )
1110adantr 274 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  x  e.  J
)  ->  N  C_  U. J
)
129opnssneib 12950 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  x  e.  J  /\  N  C_  U. J )  ->  ( x  C_  N 
<->  N  e.  ( ( nei `  J ) `
 x ) ) )
137, 8, 11, 12syl3anc 1233 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  x  e.  J
)  ->  ( x  C_  N  <->  N  e.  (
( nei `  J
) `  x )
) )
1413biimpa 294 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  N  e.  ( ( nei `  J
) `  S )
)  /\  x  e.  J )  /\  x  C_  N )  ->  N  e.  ( ( nei `  J
) `  x )
)
1514anasss 397 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( x  e.  J  /\  x  C_  N ) )  ->  N  e.  ( ( nei `  J ) `  x ) )
1615adantr 274 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  N  e.  ( ( nei `  J
) `  S )
)  /\  ( x  e.  J  /\  x  C_  N ) )  /\  y  C_  x )  ->  N  e.  ( ( nei `  J ) `  x ) )
17 simpr 109 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  N  e.  ( ( nei `  J
) `  S )
)  /\  ( x  e.  J  /\  x  C_  N ) )  /\  y  C_  x )  -> 
y  C_  x )
18 neiss 12944 . . . . . 6  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  x )  /\  y  C_  x )  ->  N  e.  ( ( nei `  J
) `  y )
)
196, 16, 17, 18syl3anc 1233 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  N  e.  ( ( nei `  J
) `  S )
)  /\  ( x  e.  J  /\  x  C_  N ) )  /\  y  C_  x )  ->  N  e.  ( ( nei `  J ) `  y ) )
2019ex 114 . . . 4  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( x  e.  J  /\  x  C_  N ) )  -> 
( y  C_  x  ->  N  e.  ( ( nei `  J ) `
 y ) ) )
2120adantrrl 483 . . 3  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( x  e.  J  /\  ( S 
C_  x  /\  x  C_  N ) ) )  ->  ( y  C_  x  ->  N  e.  ( ( nei `  J
) `  y )
) )
2221alrimiv 1867 . 2  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( x  e.  J  /\  ( S 
C_  x  /\  x  C_  N ) ) )  ->  A. y ( y 
C_  x  ->  N  e.  ( ( nei `  J
) `  y )
) )
231, 5, 22reximssdv 2574 1  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. x  e.  (
( nei `  J
) `  S ) A. y ( y  C_  x  ->  N  e.  ( ( nei `  J
) `  y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346    e. wcel 2141   E.wrex 2449    C_ wss 3121   U.cuni 3796   ` cfv 5198   Topctop 12789   neicnei 12932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-top 12790  df-nei 12933
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator