Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neissex | Unicode version |
Description: For any neighborhood of , there is a neighborhood of such that is a neighborhood of all subsets of . Generalization to subsets of Property Viv of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.) |
Ref | Expression |
---|---|
neissex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neii2 12943 | . 2 | |
2 | opnneiss 12952 | . . . . 5 | |
3 | 2 | 3expb 1199 | . . . 4 |
4 | 3 | adantrrr 484 | . . 3 |
5 | 4 | adantlr 474 | . 2 |
6 | simplll 528 | . . . . . 6 | |
7 | simpll 524 | . . . . . . . . . 10 | |
8 | simpr 109 | . . . . . . . . . 10 | |
9 | eqid 2170 | . . . . . . . . . . . 12 | |
10 | 9 | neii1 12941 | . . . . . . . . . . 11 |
11 | 10 | adantr 274 | . . . . . . . . . 10 |
12 | 9 | opnssneib 12950 | . . . . . . . . . 10 |
13 | 7, 8, 11, 12 | syl3anc 1233 | . . . . . . . . 9 |
14 | 13 | biimpa 294 | . . . . . . . 8 |
15 | 14 | anasss 397 | . . . . . . 7 |
16 | 15 | adantr 274 | . . . . . 6 |
17 | simpr 109 | . . . . . 6 | |
18 | neiss 12944 | . . . . . 6 | |
19 | 6, 16, 17, 18 | syl3anc 1233 | . . . . 5 |
20 | 19 | ex 114 | . . . 4 |
21 | 20 | adantrrl 483 | . . 3 |
22 | 21 | alrimiv 1867 | . 2 |
23 | 1, 5, 22 | reximssdv 2574 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wcel 2141 wrex 2449 wss 3121 cuni 3796 cfv 5198 ctop 12789 cnei 12932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-top 12790 df-nei 12933 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |