ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neissex Unicode version

Theorem neissex 12805
Description: For any neighborhood  N of  S, there is a neighborhood  x of  S such that  N is a neighborhood of all subsets of  x. Generalization to subsets of Property Viv of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
Assertion
Ref Expression
neissex  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. x  e.  (
( nei `  J
) `  S ) A. y ( y  C_  x  ->  N  e.  ( ( nei `  J
) `  y )
) )
Distinct variable groups:    x, y, J   
x, N, y    x, S, y

Proof of Theorem neissex
StepHypRef Expression
1 neii2 12789 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. x  e.  J  ( S  C_  x  /\  x  C_  N ) )
2 opnneiss 12798 . . . . 5  |-  ( ( J  e.  Top  /\  x  e.  J  /\  S  C_  x )  ->  x  e.  ( ( nei `  J ) `  S ) )
323expb 1194 . . . 4  |-  ( ( J  e.  Top  /\  ( x  e.  J  /\  S  C_  x ) )  ->  x  e.  ( ( nei `  J
) `  S )
)
43adantrrr 479 . . 3  |-  ( ( J  e.  Top  /\  ( x  e.  J  /\  ( S  C_  x  /\  x  C_  N ) ) )  ->  x  e.  ( ( nei `  J
) `  S )
)
54adantlr 469 . 2  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( x  e.  J  /\  ( S 
C_  x  /\  x  C_  N ) ) )  ->  x  e.  ( ( nei `  J
) `  S )
)
6 simplll 523 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  N  e.  ( ( nei `  J
) `  S )
)  /\  ( x  e.  J  /\  x  C_  N ) )  /\  y  C_  x )  ->  J  e.  Top )
7 simpll 519 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  x  e.  J
)  ->  J  e.  Top )
8 simpr 109 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  x  e.  J
)  ->  x  e.  J )
9 eqid 2165 . . . . . . . . . . . 12  |-  U. J  =  U. J
109neii1 12787 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  N  C_  U. J )
1110adantr 274 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  x  e.  J
)  ->  N  C_  U. J
)
129opnssneib 12796 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  x  e.  J  /\  N  C_  U. J )  ->  ( x  C_  N 
<->  N  e.  ( ( nei `  J ) `
 x ) ) )
137, 8, 11, 12syl3anc 1228 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  x  e.  J
)  ->  ( x  C_  N  <->  N  e.  (
( nei `  J
) `  x )
) )
1413biimpa 294 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  N  e.  ( ( nei `  J
) `  S )
)  /\  x  e.  J )  /\  x  C_  N )  ->  N  e.  ( ( nei `  J
) `  x )
)
1514anasss 397 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( x  e.  J  /\  x  C_  N ) )  ->  N  e.  ( ( nei `  J ) `  x ) )
1615adantr 274 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  N  e.  ( ( nei `  J
) `  S )
)  /\  ( x  e.  J  /\  x  C_  N ) )  /\  y  C_  x )  ->  N  e.  ( ( nei `  J ) `  x ) )
17 simpr 109 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  N  e.  ( ( nei `  J
) `  S )
)  /\  ( x  e.  J  /\  x  C_  N ) )  /\  y  C_  x )  -> 
y  C_  x )
18 neiss 12790 . . . . . 6  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  x )  /\  y  C_  x )  ->  N  e.  ( ( nei `  J
) `  y )
)
196, 16, 17, 18syl3anc 1228 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  N  e.  ( ( nei `  J
) `  S )
)  /\  ( x  e.  J  /\  x  C_  N ) )  /\  y  C_  x )  ->  N  e.  ( ( nei `  J ) `  y ) )
2019ex 114 . . . 4  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( x  e.  J  /\  x  C_  N ) )  -> 
( y  C_  x  ->  N  e.  ( ( nei `  J ) `
 y ) ) )
2120adantrrl 478 . . 3  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( x  e.  J  /\  ( S 
C_  x  /\  x  C_  N ) ) )  ->  ( y  C_  x  ->  N  e.  ( ( nei `  J
) `  y )
) )
2221alrimiv 1862 . 2  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( x  e.  J  /\  ( S 
C_  x  /\  x  C_  N ) ) )  ->  A. y ( y 
C_  x  ->  N  e.  ( ( nei `  J
) `  y )
) )
231, 5, 22reximssdv 2570 1  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. x  e.  (
( nei `  J
) `  S ) A. y ( y  C_  x  ->  N  e.  ( ( nei `  J
) `  y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341    e. wcel 2136   E.wrex 2445    C_ wss 3116   U.cuni 3789   ` cfv 5188   Topctop 12635   neicnei 12778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-top 12636  df-nei 12779
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator