ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neissex Unicode version

Theorem neissex 13216
Description: For any neighborhood  N of  S, there is a neighborhood  x of  S such that  N is a neighborhood of all subsets of  x. Generalization to subsets of Property Viv of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
Assertion
Ref Expression
neissex  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. x  e.  (
( nei `  J
) `  S ) A. y ( y  C_  x  ->  N  e.  ( ( nei `  J
) `  y )
) )
Distinct variable groups:    x, y, J   
x, N, y    x, S, y

Proof of Theorem neissex
StepHypRef Expression
1 neii2 13200 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. x  e.  J  ( S  C_  x  /\  x  C_  N ) )
2 opnneiss 13209 . . . . 5  |-  ( ( J  e.  Top  /\  x  e.  J  /\  S  C_  x )  ->  x  e.  ( ( nei `  J ) `  S ) )
323expb 1204 . . . 4  |-  ( ( J  e.  Top  /\  ( x  e.  J  /\  S  C_  x ) )  ->  x  e.  ( ( nei `  J
) `  S )
)
43adantrrr 487 . . 3  |-  ( ( J  e.  Top  /\  ( x  e.  J  /\  ( S  C_  x  /\  x  C_  N ) ) )  ->  x  e.  ( ( nei `  J
) `  S )
)
54adantlr 477 . 2  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( x  e.  J  /\  ( S 
C_  x  /\  x  C_  N ) ) )  ->  x  e.  ( ( nei `  J
) `  S )
)
6 simplll 533 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  N  e.  ( ( nei `  J
) `  S )
)  /\  ( x  e.  J  /\  x  C_  N ) )  /\  y  C_  x )  ->  J  e.  Top )
7 simpll 527 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  x  e.  J
)  ->  J  e.  Top )
8 simpr 110 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  x  e.  J
)  ->  x  e.  J )
9 eqid 2175 . . . . . . . . . . . 12  |-  U. J  =  U. J
109neii1 13198 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  N  C_  U. J )
1110adantr 276 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  x  e.  J
)  ->  N  C_  U. J
)
129opnssneib 13207 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  x  e.  J  /\  N  C_  U. J )  ->  ( x  C_  N 
<->  N  e.  ( ( nei `  J ) `
 x ) ) )
137, 8, 11, 12syl3anc 1238 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  x  e.  J
)  ->  ( x  C_  N  <->  N  e.  (
( nei `  J
) `  x )
) )
1413biimpa 296 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  N  e.  ( ( nei `  J
) `  S )
)  /\  x  e.  J )  /\  x  C_  N )  ->  N  e.  ( ( nei `  J
) `  x )
)
1514anasss 399 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( x  e.  J  /\  x  C_  N ) )  ->  N  e.  ( ( nei `  J ) `  x ) )
1615adantr 276 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  N  e.  ( ( nei `  J
) `  S )
)  /\  ( x  e.  J  /\  x  C_  N ) )  /\  y  C_  x )  ->  N  e.  ( ( nei `  J ) `  x ) )
17 simpr 110 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  N  e.  ( ( nei `  J
) `  S )
)  /\  ( x  e.  J  /\  x  C_  N ) )  /\  y  C_  x )  -> 
y  C_  x )
18 neiss 13201 . . . . . 6  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  x )  /\  y  C_  x )  ->  N  e.  ( ( nei `  J
) `  y )
)
196, 16, 17, 18syl3anc 1238 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  N  e.  ( ( nei `  J
) `  S )
)  /\  ( x  e.  J  /\  x  C_  N ) )  /\  y  C_  x )  ->  N  e.  ( ( nei `  J ) `  y ) )
2019ex 115 . . . 4  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( x  e.  J  /\  x  C_  N ) )  -> 
( y  C_  x  ->  N  e.  ( ( nei `  J ) `
 y ) ) )
2120adantrrl 486 . . 3  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( x  e.  J  /\  ( S 
C_  x  /\  x  C_  N ) ) )  ->  ( y  C_  x  ->  N  e.  ( ( nei `  J
) `  y )
) )
2221alrimiv 1872 . 2  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( x  e.  J  /\  ( S 
C_  x  /\  x  C_  N ) ) )  ->  A. y ( y 
C_  x  ->  N  e.  ( ( nei `  J
) `  y )
) )
231, 5, 22reximssdv 2579 1  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. x  e.  (
( nei `  J
) `  S ) A. y ( y  C_  x  ->  N  e.  ( ( nei `  J
) `  y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351    e. wcel 2146   E.wrex 2454    C_ wss 3127   U.cuni 3805   ` cfv 5208   Topctop 13046   neicnei 13189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-top 13047  df-nei 13190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator