Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neissex | Unicode version |
Description: For any neighborhood of , there is a neighborhood of such that is a neighborhood of all subsets of . Generalization to subsets of Property Viv of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.) |
Ref | Expression |
---|---|
neissex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neii2 12789 | . 2 | |
2 | opnneiss 12798 | . . . . 5 | |
3 | 2 | 3expb 1194 | . . . 4 |
4 | 3 | adantrrr 479 | . . 3 |
5 | 4 | adantlr 469 | . 2 |
6 | simplll 523 | . . . . . 6 | |
7 | simpll 519 | . . . . . . . . . 10 | |
8 | simpr 109 | . . . . . . . . . 10 | |
9 | eqid 2165 | . . . . . . . . . . . 12 | |
10 | 9 | neii1 12787 | . . . . . . . . . . 11 |
11 | 10 | adantr 274 | . . . . . . . . . 10 |
12 | 9 | opnssneib 12796 | . . . . . . . . . 10 |
13 | 7, 8, 11, 12 | syl3anc 1228 | . . . . . . . . 9 |
14 | 13 | biimpa 294 | . . . . . . . 8 |
15 | 14 | anasss 397 | . . . . . . 7 |
16 | 15 | adantr 274 | . . . . . 6 |
17 | simpr 109 | . . . . . 6 | |
18 | neiss 12790 | . . . . . 6 | |
19 | 6, 16, 17, 18 | syl3anc 1228 | . . . . 5 |
20 | 19 | ex 114 | . . . 4 |
21 | 20 | adantrrl 478 | . . 3 |
22 | 21 | alrimiv 1862 | . 2 |
23 | 1, 5, 22 | reximssdv 2570 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wcel 2136 wrex 2445 wss 3116 cuni 3789 cfv 5188 ctop 12635 cnei 12778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-top 12636 df-nei 12779 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |