ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscnp4 Unicode version

Theorem iscnp4 13803
Description: The predicate "the class  F is a continuous function from topology  J to topology  K at point  P " in terms of neighborhoods. (Contributed by FL, 18-Jul-2011.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
iscnp4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y ) ) )
Distinct variable groups:    x, y, F   
x, J, y    x, K, y    x, P, y   
x, X, y    x, Y, y

Proof of Theorem iscnp4
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cnpf2 13792 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  F : X
--> Y )
213expa 1203 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  F : X
--> Y )
323adantl3 1155 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  F : X
--> Y )
4 simpll1 1036 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  ->  J  e.  (TopOn `  X
) )
5 simpll2 1037 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  ->  K  e.  (TopOn `  Y
) )
6 simpll3 1038 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  ->  P  e.  X )
7 simplr 528 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  ->  F  e.  ( ( J  CnP  K ) `  P ) )
8 topontop 13599 . . . . . . . . 9  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
95, 8syl 14 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  ->  K  e.  Top )
10 eqid 2177 . . . . . . . . . 10  |-  U. K  =  U. K
1110neii1 13732 . . . . . . . . 9  |-  ( ( K  e.  Top  /\  y  e.  ( ( nei `  K ) `  { ( F `  P ) } ) )  ->  y  C_  U. K )
129, 11sylancom 420 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  -> 
y  C_  U. K )
1310ntropn 13702 . . . . . . . 8  |-  ( ( K  e.  Top  /\  y  C_  U. K )  ->  ( ( int `  K ) `  y
)  e.  K )
149, 12, 13syl2anc 411 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  -> 
( ( int `  K
) `  y )  e.  K )
15 simpr 110 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  -> 
y  e.  ( ( nei `  K ) `
 { ( F `
 P ) } ) )
163adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  ->  F : X --> Y )
1716, 6ffvelcdmd 5654 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  -> 
( F `  P
)  e.  Y )
18 toponuni 13600 . . . . . . . . . . . . 13  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
195, 18syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  ->  Y  =  U. K )
2017, 19eleqtrd 2256 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  -> 
( F `  P
)  e.  U. K
)
2120snssd 3739 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  ->  { ( F `  P ) }  C_  U. K )
2210neiint 13730 . . . . . . . . . 10  |-  ( ( K  e.  Top  /\  { ( F `  P
) }  C_  U. K  /\  y  C_  U. K
)  ->  ( y  e.  ( ( nei `  K
) `  { ( F `  P ) } )  <->  { ( F `  P ) }  C_  ( ( int `  K ) `  y
) ) )
239, 21, 12, 22syl3anc 1238 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  -> 
( y  e.  ( ( nei `  K
) `  { ( F `  P ) } )  <->  { ( F `  P ) }  C_  ( ( int `  K ) `  y
) ) )
2415, 23mpbid 147 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  ->  { ( F `  P ) }  C_  ( ( int `  K
) `  y )
)
25 fvexg 5536 . . . . . . . . . 10  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  P  e.  X )  ->  ( F `  P
)  e.  _V )
267, 6, 25syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  -> 
( F `  P
)  e.  _V )
27 snssg 3728 . . . . . . . . 9  |-  ( ( F `  P )  e.  _V  ->  (
( F `  P
)  e.  ( ( int `  K ) `
 y )  <->  { ( F `  P ) }  C_  ( ( int `  K ) `  y
) ) )
2826, 27syl 14 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  -> 
( ( F `  P )  e.  ( ( int `  K
) `  y )  <->  { ( F `  P
) }  C_  (
( int `  K
) `  y )
) )
2924, 28mpbird 167 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  -> 
( F `  P
)  e.  ( ( int `  K ) `
 y ) )
30 icnpimaex 13796 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  ( ( int `  K ) `  y
)  e.  K  /\  ( F `  P )  e.  ( ( int `  K ) `  y
) ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  ( ( int `  K ) `  y ) ) )
314, 5, 6, 7, 14, 29, 30syl33anc 1253 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  ( ( int `  K ) `  y ) ) )
32 simpl1 1000 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  J  e.  (TopOn `  X ) )
3332ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  /\  ( x  e.  J  /\  ( P  e.  x  /\  ( F " x
)  C_  ( ( int `  K ) `  y ) ) ) )  ->  J  e.  (TopOn `  X ) )
34 topontop 13599 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
3533, 34syl 14 . . . . . . 7  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  /\  ( x  e.  J  /\  ( P  e.  x  /\  ( F " x
)  C_  ( ( int `  K ) `  y ) ) ) )  ->  J  e.  Top )
36 simprl 529 . . . . . . 7  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  /\  ( x  e.  J  /\  ( P  e.  x  /\  ( F " x
)  C_  ( ( int `  K ) `  y ) ) ) )  ->  x  e.  J )
37 simprrl 539 . . . . . . 7  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  /\  ( x  e.  J  /\  ( P  e.  x  /\  ( F " x
)  C_  ( ( int `  K ) `  y ) ) ) )  ->  P  e.  x )
38 opnneip 13744 . . . . . . 7  |-  ( ( J  e.  Top  /\  x  e.  J  /\  P  e.  x )  ->  x  e.  ( ( nei `  J ) `
 { P }
) )
3935, 36, 37, 38syl3anc 1238 . . . . . 6  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  /\  ( x  e.  J  /\  ( P  e.  x  /\  ( F " x
)  C_  ( ( int `  K ) `  y ) ) ) )  ->  x  e.  ( ( nei `  J
) `  { P } ) )
40 simprrr 540 . . . . . . 7  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  /\  ( x  e.  J  /\  ( P  e.  x  /\  ( F " x
)  C_  ( ( int `  K ) `  y ) ) ) )  ->  ( F " x )  C_  (
( int `  K
) `  y )
)
4110ntrss2 13706 . . . . . . . . 9  |-  ( ( K  e.  Top  /\  y  C_  U. K )  ->  ( ( int `  K ) `  y
)  C_  y )
429, 12, 41syl2anc 411 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  -> 
( ( int `  K
) `  y )  C_  y )
4342adantr 276 . . . . . . 7  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  /\  ( x  e.  J  /\  ( P  e.  x  /\  ( F " x
)  C_  ( ( int `  K ) `  y ) ) ) )  ->  ( ( int `  K ) `  y )  C_  y
)
4440, 43sstrd 3167 . . . . . 6  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  /\  ( x  e.  J  /\  ( P  e.  x  /\  ( F " x
)  C_  ( ( int `  K ) `  y ) ) ) )  ->  ( F " x )  C_  y
)
4531, 39, 44reximssdv 2581 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  ->  E. x  e.  (
( nei `  J
) `  { P } ) ( F
" x )  C_  y )
4645ralrimiva 2550 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  A. y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y )
473, 46jca 306 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  ( F : X --> Y  /\  A. y  e.  ( ( nei `  K ) `  { ( F `  P ) } ) E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y ) )
4847ex 115 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  ->  ( F : X
--> Y  /\  A. y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y ) ) )
49 simpll2 1037 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `  P
)  e.  y ) )  ->  K  e.  (TopOn `  Y ) )
5049, 8syl 14 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `  P
)  e.  y ) )  ->  K  e.  Top )
51 simprl 529 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `  P
)  e.  y ) )  ->  y  e.  K )
52 simprr 531 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `  P
)  e.  y ) )  ->  ( F `  P )  e.  y )
53 opnneip 13744 . . . . . . . . . 10  |-  ( ( K  e.  Top  /\  y  e.  K  /\  ( F `  P )  e.  y )  -> 
y  e.  ( ( nei `  K ) `
 { ( F `
 P ) } ) )
5450, 51, 52, 53syl3anc 1238 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `  P
)  e.  y ) )  ->  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )
55 simpl1 1000 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  F : X
--> Y )  ->  J  e.  (TopOn `  X )
)
5655ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  J  e.  (TopOn `  X
) )
5756, 34syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  J  e.  Top )
58 simprl 529 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  x  e.  ( ( nei `  J ) `  { P } ) )
59 eqid 2177 . . . . . . . . . . . . . 14  |-  U. J  =  U. J
6059neii1 13732 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  x  e.  ( ( nei `  J ) `  { P } ) )  ->  x  C_  U. J
)
6157, 58, 60syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  x  C_  U. J )
6259ntropn 13702 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  x  C_  U. J )  ->  ( ( int `  J ) `  x
)  e.  J )
6357, 61, 62syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  -> 
( ( int `  J
) `  x )  e.  J )
64 simpll3 1038 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `  P
)  e.  y ) )  ->  P  e.  X )
6564adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  P  e.  X )
66 toponuni 13600 . . . . . . . . . . . . . . . . 17  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
6756, 66syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  X  =  U. J )
6865, 67eleqtrd 2256 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  P  e.  U. J )
6968snssd 3739 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  { P }  C_  U. J
)
7059neiint 13730 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  { P }  C_  U. J  /\  x  C_  U. J
)  ->  ( x  e.  ( ( nei `  J
) `  { P } )  <->  { P }  C_  ( ( int `  J ) `  x
) ) )
7157, 69, 61, 70syl3anc 1238 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  -> 
( x  e.  ( ( nei `  J
) `  { P } )  <->  { P }  C_  ( ( int `  J ) `  x
) ) )
7258, 71mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  { P }  C_  (
( int `  J
) `  x )
)
73 snssg 3728 . . . . . . . . . . . . 13  |-  ( P  e.  X  ->  ( P  e.  ( ( int `  J ) `  x )  <->  { P }  C_  ( ( int `  J ) `  x
) ) )
7465, 73syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  -> 
( P  e.  ( ( int `  J
) `  x )  <->  { P }  C_  (
( int `  J
) `  x )
) )
7572, 74mpbird 167 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  P  e.  ( ( int `  J ) `  x ) )
7659ntrss2 13706 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  x  C_  U. J )  ->  ( ( int `  J ) `  x
)  C_  x )
7757, 61, 76syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  -> 
( ( int `  J
) `  x )  C_  x )
78 imass2 5006 . . . . . . . . . . . . 13  |-  ( ( ( int `  J
) `  x )  C_  x  ->  ( F " ( ( int `  J
) `  x )
)  C_  ( F " x ) )
7977, 78syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  -> 
( F " (
( int `  J
) `  x )
)  C_  ( F " x ) )
80 simprr 531 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  -> 
( F " x
)  C_  y )
8179, 80sstrd 3167 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  -> 
( F " (
( int `  J
) `  x )
)  C_  y )
82 eleq2 2241 . . . . . . . . . . . . 13  |-  ( z  =  ( ( int `  J ) `  x
)  ->  ( P  e.  z  <->  P  e.  (
( int `  J
) `  x )
) )
83 imaeq2 4968 . . . . . . . . . . . . . 14  |-  ( z  =  ( ( int `  J ) `  x
)  ->  ( F " z )  =  ( F " ( ( int `  J ) `
 x ) ) )
8483sseq1d 3186 . . . . . . . . . . . . 13  |-  ( z  =  ( ( int `  J ) `  x
)  ->  ( ( F " z )  C_  y 
<->  ( F " (
( int `  J
) `  x )
)  C_  y )
)
8582, 84anbi12d 473 . . . . . . . . . . . 12  |-  ( z  =  ( ( int `  J ) `  x
)  ->  ( ( P  e.  z  /\  ( F " z ) 
C_  y )  <->  ( P  e.  ( ( int `  J
) `  x )  /\  ( F " (
( int `  J
) `  x )
)  C_  y )
) )
8685rspcev 2843 . . . . . . . . . . 11  |-  ( ( ( ( int `  J
) `  x )  e.  J  /\  ( P  e.  ( ( int `  J ) `  x )  /\  ( F " ( ( int `  J ) `  x
) )  C_  y
) )  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z )  C_  y ) )
8763, 75, 81, 86syl12anc 1236 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z
)  C_  y )
)
8887rexlimdvaa 2595 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `  P
)  e.  y ) )  ->  ( E. x  e.  ( ( nei `  J ) `  { P } ) ( F " x ) 
C_  y  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z )  C_  y ) ) )
8954, 88embantd 56 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `  P
)  e.  y ) )  ->  ( (
y  e.  ( ( nei `  K ) `
 { ( F `
 P ) } )  ->  E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y )  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z )  C_  y ) ) )
9089ex 115 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  F : X
--> Y )  ->  (
( y  e.  K  /\  ( F `  P
)  e.  y )  ->  ( ( y  e.  ( ( nei `  K ) `  {
( F `  P
) } )  ->  E. x  e.  (
( nei `  J
) `  { P } ) ( F
" x )  C_  y )  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z )  C_  y ) ) ) )
9190com23 78 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  F : X
--> Y )  ->  (
( y  e.  ( ( nei `  K
) `  { ( F `  P ) } )  ->  E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y )  ->  (
( y  e.  K  /\  ( F `  P
)  e.  y )  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z
)  C_  y )
) ) )
9291exp4a 366 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  F : X
--> Y )  ->  (
( y  e.  ( ( nei `  K
) `  { ( F `  P ) } )  ->  E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y )  ->  (
y  e.  K  -> 
( ( F `  P )  e.  y  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z
)  C_  y )
) ) ) )
9392ralimdv2 2547 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  F : X
--> Y )  ->  ( A. y  e.  (
( nei `  K
) `  { ( F `  P ) } ) E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y  ->  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z
)  C_  y )
) ) )
9493imdistanda 448 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( ( F : X --> Y  /\  A. y  e.  ( ( nei `  K ) `
 { ( F `
 P ) } ) E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y )  ->  ( F : X --> Y  /\  A. y  e.  K  ( ( F `  P
)  e.  y  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z
)  C_  y )
) ) ) )
95 iscnp 13784 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z )  C_  y ) ) ) ) )
9694, 95sylibrd 169 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( ( F : X --> Y  /\  A. y  e.  ( ( nei `  K ) `
 { ( F `
 P ) } ) E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y )  ->  F  e.  ( ( J  CnP  K ) `  P ) ) )
9748, 96impbid 129 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   _Vcvv 2739    C_ wss 3131   {csn 3594   U.cuni 3811   "cima 4631   -->wf 5214   ` cfv 5218  (class class class)co 5877   Topctop 13582  TopOnctopon 13595   intcnt 13678   neicnei 13723    CnP ccnp 13771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-top 13583  df-topon 13596  df-ntr 13681  df-nei 13724  df-cnp 13774
This theorem is referenced by:  cnnei  13817
  Copyright terms: Public domain W3C validator