| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplocexprlemrl | Unicode version | ||
| Description: Lemma for suplocexpr 7838. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| Ref | Expression |
|---|---|
| suplocexpr.m |
|
| suplocexpr.ub |
|
| suplocexpr.loc |
|
| Ref | Expression |
|---|---|
| suplocexprlemrl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suplocexprlemell 7826 |
. . . . . . 7
| |
| 2 | 1 | biimpi 120 |
. . . . . 6
|
| 3 | 2 | adantl 277 |
. . . . 5
|
| 4 | suplocexpr.m |
. . . . . . . . . . 11
| |
| 5 | suplocexpr.ub |
. . . . . . . . . . 11
| |
| 6 | suplocexpr.loc |
. . . . . . . . . . 11
| |
| 7 | 4, 5, 6 | suplocexprlemss 7828 |
. . . . . . . . . 10
|
| 8 | 7 | ad3antrrr 492 |
. . . . . . . . 9
|
| 9 | simprl 529 |
. . . . . . . . 9
| |
| 10 | 8, 9 | sseldd 3194 |
. . . . . . . 8
|
| 11 | prop 7588 |
. . . . . . . 8
| |
| 12 | 10, 11 | syl 14 |
. . . . . . 7
|
| 13 | simprr 531 |
. . . . . . 7
| |
| 14 | prnmaxl 7601 |
. . . . . . 7
| |
| 15 | 12, 13, 14 | syl2anc 411 |
. . . . . 6
|
| 16 | ltrelnq 7478 |
. . . . . . . . 9
| |
| 17 | 16 | brel 4727 |
. . . . . . . 8
|
| 18 | 17 | simprd 114 |
. . . . . . 7
|
| 19 | 18 | ad2antll 491 |
. . . . . 6
|
| 20 | simprr 531 |
. . . . . . 7
| |
| 21 | simplrl 535 |
. . . . . . . . 9
| |
| 22 | simprl 529 |
. . . . . . . . 9
| |
| 23 | rspe 2555 |
. . . . . . . . 9
| |
| 24 | 21, 22, 23 | syl2anc 411 |
. . . . . . . 8
|
| 25 | suplocexprlemell 7826 |
. . . . . . . 8
| |
| 26 | 24, 25 | sylibr 134 |
. . . . . . 7
|
| 27 | 20, 26 | jca 306 |
. . . . . 6
|
| 28 | 15, 19, 27 | reximssdv 2610 |
. . . . 5
|
| 29 | 3, 28 | rexlimddv 2628 |
. . . 4
|
| 30 | 29 | ex 115 |
. . 3
|
| 31 | simprr 531 |
. . . . . . 7
| |
| 32 | 31, 25 | sylib 122 |
. . . . . 6
|
| 33 | simprl 529 |
. . . . . . . . 9
| |
| 34 | simplrl 535 |
. . . . . . . . . 10
| |
| 35 | 7 | ad3antrrr 492 |
. . . . . . . . . . . . 13
|
| 36 | 35, 33 | sseldd 3194 |
. . . . . . . . . . . 12
|
| 37 | 36, 11 | syl 14 |
. . . . . . . . . . 11
|
| 38 | simprr 531 |
. . . . . . . . . . 11
| |
| 39 | prcdnql 7597 |
. . . . . . . . . . 11
| |
| 40 | 37, 38, 39 | syl2anc 411 |
. . . . . . . . . 10
|
| 41 | 34, 40 | mpd 13 |
. . . . . . . . 9
|
| 42 | 19.8a 1613 |
. . . . . . . . 9
| |
| 43 | 33, 41, 42 | syl2anc 411 |
. . . . . . . 8
|
| 44 | df-rex 2490 |
. . . . . . . 8
| |
| 45 | 43, 44 | sylibr 134 |
. . . . . . 7
|
| 46 | 45, 1 | sylibr 134 |
. . . . . 6
|
| 47 | 32, 46 | rexlimddv 2628 |
. . . . 5
|
| 48 | 47 | ex 115 |
. . . 4
|
| 49 | 48 | rexlimdvw 2627 |
. . 3
|
| 50 | 30, 49 | impbid 129 |
. 2
|
| 51 | 50 | ralrimiva 2579 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-1st 6226 df-2nd 6227 df-qs 6626 df-ni 7417 df-nqqs 7461 df-ltnqqs 7466 df-inp 7579 df-iltp 7583 |
| This theorem is referenced by: suplocexprlemex 7835 |
| Copyright terms: Public domain | W3C validator |