| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplocexprlemrl | Unicode version | ||
| Description: Lemma for suplocexpr 7912. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| Ref | Expression |
|---|---|
| suplocexpr.m |
|
| suplocexpr.ub |
|
| suplocexpr.loc |
|
| Ref | Expression |
|---|---|
| suplocexprlemrl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suplocexprlemell 7900 |
. . . . . . 7
| |
| 2 | 1 | biimpi 120 |
. . . . . 6
|
| 3 | 2 | adantl 277 |
. . . . 5
|
| 4 | suplocexpr.m |
. . . . . . . . . . 11
| |
| 5 | suplocexpr.ub |
. . . . . . . . . . 11
| |
| 6 | suplocexpr.loc |
. . . . . . . . . . 11
| |
| 7 | 4, 5, 6 | suplocexprlemss 7902 |
. . . . . . . . . 10
|
| 8 | 7 | ad3antrrr 492 |
. . . . . . . . 9
|
| 9 | simprl 529 |
. . . . . . . . 9
| |
| 10 | 8, 9 | sseldd 3225 |
. . . . . . . 8
|
| 11 | prop 7662 |
. . . . . . . 8
| |
| 12 | 10, 11 | syl 14 |
. . . . . . 7
|
| 13 | simprr 531 |
. . . . . . 7
| |
| 14 | prnmaxl 7675 |
. . . . . . 7
| |
| 15 | 12, 13, 14 | syl2anc 411 |
. . . . . 6
|
| 16 | ltrelnq 7552 |
. . . . . . . . 9
| |
| 17 | 16 | brel 4771 |
. . . . . . . 8
|
| 18 | 17 | simprd 114 |
. . . . . . 7
|
| 19 | 18 | ad2antll 491 |
. . . . . 6
|
| 20 | simprr 531 |
. . . . . . 7
| |
| 21 | simplrl 535 |
. . . . . . . . 9
| |
| 22 | simprl 529 |
. . . . . . . . 9
| |
| 23 | rspe 2579 |
. . . . . . . . 9
| |
| 24 | 21, 22, 23 | syl2anc 411 |
. . . . . . . 8
|
| 25 | suplocexprlemell 7900 |
. . . . . . . 8
| |
| 26 | 24, 25 | sylibr 134 |
. . . . . . 7
|
| 27 | 20, 26 | jca 306 |
. . . . . 6
|
| 28 | 15, 19, 27 | reximssdv 2634 |
. . . . 5
|
| 29 | 3, 28 | rexlimddv 2653 |
. . . 4
|
| 30 | 29 | ex 115 |
. . 3
|
| 31 | simprr 531 |
. . . . . . 7
| |
| 32 | 31, 25 | sylib 122 |
. . . . . 6
|
| 33 | simprl 529 |
. . . . . . . . 9
| |
| 34 | simplrl 535 |
. . . . . . . . . 10
| |
| 35 | 7 | ad3antrrr 492 |
. . . . . . . . . . . . 13
|
| 36 | 35, 33 | sseldd 3225 |
. . . . . . . . . . . 12
|
| 37 | 36, 11 | syl 14 |
. . . . . . . . . . 11
|
| 38 | simprr 531 |
. . . . . . . . . . 11
| |
| 39 | prcdnql 7671 |
. . . . . . . . . . 11
| |
| 40 | 37, 38, 39 | syl2anc 411 |
. . . . . . . . . 10
|
| 41 | 34, 40 | mpd 13 |
. . . . . . . . 9
|
| 42 | 19.8a 1636 |
. . . . . . . . 9
| |
| 43 | 33, 41, 42 | syl2anc 411 |
. . . . . . . 8
|
| 44 | df-rex 2514 |
. . . . . . . 8
| |
| 45 | 43, 44 | sylibr 134 |
. . . . . . 7
|
| 46 | 45, 1 | sylibr 134 |
. . . . . 6
|
| 47 | 32, 46 | rexlimddv 2653 |
. . . . 5
|
| 48 | 47 | ex 115 |
. . . 4
|
| 49 | 48 | rexlimdvw 2652 |
. . 3
|
| 50 | 30, 49 | impbid 129 |
. 2
|
| 51 | 50 | ralrimiva 2603 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-1st 6286 df-2nd 6287 df-qs 6686 df-ni 7491 df-nqqs 7535 df-ltnqqs 7540 df-inp 7653 df-iltp 7657 |
| This theorem is referenced by: suplocexprlemex 7909 |
| Copyright terms: Public domain | W3C validator |