Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suplocexprlemrl | Unicode version |
Description: Lemma for suplocexpr 7666. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.) |
Ref | Expression |
---|---|
suplocexpr.m | |
suplocexpr.ub | |
suplocexpr.loc |
Ref | Expression |
---|---|
suplocexprlemrl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suplocexprlemell 7654 | . . . . . . 7 | |
2 | 1 | biimpi 119 | . . . . . 6 |
3 | 2 | adantl 275 | . . . . 5 |
4 | suplocexpr.m | . . . . . . . . . . 11 | |
5 | suplocexpr.ub | . . . . . . . . . . 11 | |
6 | suplocexpr.loc | . . . . . . . . . . 11 | |
7 | 4, 5, 6 | suplocexprlemss 7656 | . . . . . . . . . 10 |
8 | 7 | ad3antrrr 484 | . . . . . . . . 9 |
9 | simprl 521 | . . . . . . . . 9 | |
10 | 8, 9 | sseldd 3143 | . . . . . . . 8 |
11 | prop 7416 | . . . . . . . 8 | |
12 | 10, 11 | syl 14 | . . . . . . 7 |
13 | simprr 522 | . . . . . . 7 | |
14 | prnmaxl 7429 | . . . . . . 7 | |
15 | 12, 13, 14 | syl2anc 409 | . . . . . 6 |
16 | ltrelnq 7306 | . . . . . . . . 9 | |
17 | 16 | brel 4656 | . . . . . . . 8 |
18 | 17 | simprd 113 | . . . . . . 7 |
19 | 18 | ad2antll 483 | . . . . . 6 |
20 | simprr 522 | . . . . . . 7 | |
21 | simplrl 525 | . . . . . . . . 9 | |
22 | simprl 521 | . . . . . . . . 9 | |
23 | rspe 2515 | . . . . . . . . 9 | |
24 | 21, 22, 23 | syl2anc 409 | . . . . . . . 8 |
25 | suplocexprlemell 7654 | . . . . . . . 8 | |
26 | 24, 25 | sylibr 133 | . . . . . . 7 |
27 | 20, 26 | jca 304 | . . . . . 6 |
28 | 15, 19, 27 | reximssdv 2570 | . . . . 5 |
29 | 3, 28 | rexlimddv 2588 | . . . 4 |
30 | 29 | ex 114 | . . 3 |
31 | simprr 522 | . . . . . . 7 | |
32 | 31, 25 | sylib 121 | . . . . . 6 |
33 | simprl 521 | . . . . . . . . 9 | |
34 | simplrl 525 | . . . . . . . . . 10 | |
35 | 7 | ad3antrrr 484 | . . . . . . . . . . . . 13 |
36 | 35, 33 | sseldd 3143 | . . . . . . . . . . . 12 |
37 | 36, 11 | syl 14 | . . . . . . . . . . 11 |
38 | simprr 522 | . . . . . . . . . . 11 | |
39 | prcdnql 7425 | . . . . . . . . . . 11 | |
40 | 37, 38, 39 | syl2anc 409 | . . . . . . . . . 10 |
41 | 34, 40 | mpd 13 | . . . . . . . . 9 |
42 | 19.8a 1578 | . . . . . . . . 9 | |
43 | 33, 41, 42 | syl2anc 409 | . . . . . . . 8 |
44 | df-rex 2450 | . . . . . . . 8 | |
45 | 43, 44 | sylibr 133 | . . . . . . 7 |
46 | 45, 1 | sylibr 133 | . . . . . 6 |
47 | 32, 46 | rexlimddv 2588 | . . . . 5 |
48 | 47 | ex 114 | . . . 4 |
49 | 48 | rexlimdvw 2587 | . . 3 |
50 | 30, 49 | impbid 128 | . 2 |
51 | 50 | ralrimiva 2539 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wex 1480 wcel 2136 wral 2444 wrex 2445 wss 3116 cop 3579 cuni 3789 class class class wbr 3982 cima 4607 cfv 5188 c1st 6106 c2nd 6107 cnq 7221 cltq 7226 cnp 7232 cltp 7236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-qs 6507 df-ni 7245 df-nqqs 7289 df-ltnqqs 7294 df-inp 7407 df-iltp 7411 |
This theorem is referenced by: suplocexprlemex 7663 |
Copyright terms: Public domain | W3C validator |