ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemrl Unicode version

Theorem suplocexprlemrl 7658
Description: Lemma for suplocexpr 7666. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
Assertion
Ref Expression
suplocexprlemrl  |-  ( ph  ->  A. q  e.  Q.  ( q  e.  U. ( 1st " A )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) ) )
Distinct variable groups:    A, r    x, A, y    ph, q, r    ph, x, y
Allowed substitution hints:    ph( z)    A( z,
q)

Proof of Theorem suplocexprlemrl
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 suplocexprlemell 7654 . . . . . . 7  |-  ( q  e.  U. ( 1st " A )  <->  E. s  e.  A  q  e.  ( 1st `  s ) )
21biimpi 119 . . . . . 6  |-  ( q  e.  U. ( 1st " A )  ->  E. s  e.  A  q  e.  ( 1st `  s ) )
32adantl 275 . . . . 5  |-  ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A
) )  ->  E. s  e.  A  q  e.  ( 1st `  s ) )
4 suplocexpr.m . . . . . . . . . . 11  |-  ( ph  ->  E. x  x  e.  A )
5 suplocexpr.ub . . . . . . . . . . 11  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
6 suplocexpr.loc . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
74, 5, 6suplocexprlemss 7656 . . . . . . . . . 10  |-  ( ph  ->  A  C_  P. )
87ad3antrrr 484 . . . . . . . . 9  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  ->  A  C_  P. )
9 simprl 521 . . . . . . . . 9  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  -> 
s  e.  A )
108, 9sseldd 3143 . . . . . . . 8  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  -> 
s  e.  P. )
11 prop 7416 . . . . . . . 8  |-  ( s  e.  P.  ->  <. ( 1st `  s ) ,  ( 2nd `  s
) >.  e.  P. )
1210, 11syl 14 . . . . . . 7  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  ->  <. ( 1st `  s
) ,  ( 2nd `  s ) >.  e.  P. )
13 simprr 522 . . . . . . 7  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  -> 
q  e.  ( 1st `  s ) )
14 prnmaxl 7429 . . . . . . 7  |-  ( (
<. ( 1st `  s
) ,  ( 2nd `  s ) >.  e.  P.  /\  q  e.  ( 1st `  s ) )  ->  E. r  e.  ( 1st `  s ) q 
<Q  r )
1512, 13, 14syl2anc 409 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  ->  E. r  e.  ( 1st `  s ) q 
<Q  r )
16 ltrelnq 7306 . . . . . . . . 9  |-  <Q  C_  ( Q.  X.  Q. )
1716brel 4656 . . . . . . . 8  |-  ( q 
<Q  r  ->  ( q  e.  Q.  /\  r  e.  Q. ) )
1817simprd 113 . . . . . . 7  |-  ( q 
<Q  r  ->  r  e. 
Q. )
1918ad2antll 483 . . . . . 6  |-  ( ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  /\  ( r  e.  ( 1st `  s )  /\  q  <Q  r
) )  ->  r  e.  Q. )
20 simprr 522 . . . . . . 7  |-  ( ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  /\  ( r  e.  ( 1st `  s )  /\  q  <Q  r
) )  ->  q  <Q  r )
21 simplrl 525 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  /\  ( r  e.  ( 1st `  s )  /\  q  <Q  r
) )  ->  s  e.  A )
22 simprl 521 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  /\  ( r  e.  ( 1st `  s )  /\  q  <Q  r
) )  ->  r  e.  ( 1st `  s
) )
23 rspe 2515 . . . . . . . . 9  |-  ( ( s  e.  A  /\  r  e.  ( 1st `  s ) )  ->  E. s  e.  A  r  e.  ( 1st `  s ) )
2421, 22, 23syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  /\  ( r  e.  ( 1st `  s )  /\  q  <Q  r
) )  ->  E. s  e.  A  r  e.  ( 1st `  s ) )
25 suplocexprlemell 7654 . . . . . . . 8  |-  ( r  e.  U. ( 1st " A )  <->  E. s  e.  A  r  e.  ( 1st `  s ) )
2624, 25sylibr 133 . . . . . . 7  |-  ( ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  /\  ( r  e.  ( 1st `  s )  /\  q  <Q  r
) )  ->  r  e.  U. ( 1st " A
) )
2720, 26jca 304 . . . . . 6  |-  ( ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  /\  ( r  e.  ( 1st `  s )  /\  q  <Q  r
) )  ->  (
q  <Q  r  /\  r  e.  U. ( 1st " A
) ) )
2815, 19, 27reximssdv 2570 . . . . 5  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  ->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )
293, 28rexlimddv 2588 . . . 4  |-  ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A
) )  ->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  U. ( 1st " A
) ) )
3029ex 114 . . 3  |-  ( (
ph  /\  q  e.  Q. )  ->  ( q  e.  U. ( 1st " A )  ->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  U. ( 1st " A
) ) ) )
31 simprr 522 . . . . . . 7  |-  ( ( ( ph  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  r  e.  U. ( 1st " A
) ) )  -> 
r  e.  U. ( 1st " A ) )
3231, 25sylib 121 . . . . . 6  |-  ( ( ( ph  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  r  e.  U. ( 1st " A
) ) )  ->  E. s  e.  A  r  e.  ( 1st `  s ) )
33 simprl 521 . . . . . . . . 9  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  -> 
s  e.  A )
34 simplrl 525 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  -> 
q  <Q  r )
357ad3antrrr 484 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  ->  A  C_  P. )
3635, 33sseldd 3143 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  -> 
s  e.  P. )
3736, 11syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  ->  <. ( 1st `  s
) ,  ( 2nd `  s ) >.  e.  P. )
38 simprr 522 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  -> 
r  e.  ( 1st `  s ) )
39 prcdnql 7425 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  s
) ,  ( 2nd `  s ) >.  e.  P.  /\  r  e.  ( 1st `  s ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  s ) ) )
4037, 38, 39syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  s ) ) )
4134, 40mpd 13 . . . . . . . . 9  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  -> 
q  e.  ( 1st `  s ) )
42 19.8a 1578 . . . . . . . . 9  |-  ( ( s  e.  A  /\  q  e.  ( 1st `  s ) )  ->  E. s ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )
4333, 41, 42syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  ->  E. s ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )
44 df-rex 2450 . . . . . . . 8  |-  ( E. s  e.  A  q  e.  ( 1st `  s
)  <->  E. s ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )
4543, 44sylibr 133 . . . . . . 7  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  ->  E. s  e.  A  q  e.  ( 1st `  s ) )
4645, 1sylibr 133 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  -> 
q  e.  U. ( 1st " A ) )
4732, 46rexlimddv 2588 . . . . 5  |-  ( ( ( ph  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  r  e.  U. ( 1st " A
) ) )  -> 
q  e.  U. ( 1st " A ) )
4847ex 114 . . . 4  |-  ( (
ph  /\  q  e.  Q. )  ->  ( ( q  <Q  r  /\  r  e.  U. ( 1st " A ) )  ->  q  e.  U. ( 1st " A ) ) )
4948rexlimdvw 2587 . . 3  |-  ( (
ph  /\  q  e.  Q. )  ->  ( E. r  e.  Q.  (
q  <Q  r  /\  r  e.  U. ( 1st " A
) )  ->  q  e.  U. ( 1st " A
) ) )
5030, 49impbid 128 . 2  |-  ( (
ph  /\  q  e.  Q. )  ->  ( q  e.  U. ( 1st " A )  <->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  U. ( 1st " A
) ) ) )
5150ralrimiva 2539 1  |-  ( ph  ->  A. q  e.  Q.  ( q  e.  U. ( 1st " A )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698   E.wex 1480    e. wcel 2136   A.wral 2444   E.wrex 2445    C_ wss 3116   <.cop 3579   U.cuni 3789   class class class wbr 3982   "cima 4607   ` cfv 5188   1stc1st 6106   2ndc2nd 6107   Q.cnq 7221    <Q cltq 7226   P.cnp 7232    <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-qs 6507  df-ni 7245  df-nqqs 7289  df-ltnqqs 7294  df-inp 7407  df-iltp 7411
This theorem is referenced by:  suplocexprlemex  7663
  Copyright terms: Public domain W3C validator