ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemrl Unicode version

Theorem suplocexprlemrl 7904
Description: Lemma for suplocexpr 7912. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
Assertion
Ref Expression
suplocexprlemrl  |-  ( ph  ->  A. q  e.  Q.  ( q  e.  U. ( 1st " A )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) ) )
Distinct variable groups:    A, r    x, A, y    ph, q, r    ph, x, y
Allowed substitution hints:    ph( z)    A( z,
q)

Proof of Theorem suplocexprlemrl
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 suplocexprlemell 7900 . . . . . . 7  |-  ( q  e.  U. ( 1st " A )  <->  E. s  e.  A  q  e.  ( 1st `  s ) )
21biimpi 120 . . . . . 6  |-  ( q  e.  U. ( 1st " A )  ->  E. s  e.  A  q  e.  ( 1st `  s ) )
32adantl 277 . . . . 5  |-  ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A
) )  ->  E. s  e.  A  q  e.  ( 1st `  s ) )
4 suplocexpr.m . . . . . . . . . . 11  |-  ( ph  ->  E. x  x  e.  A )
5 suplocexpr.ub . . . . . . . . . . 11  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
6 suplocexpr.loc . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
74, 5, 6suplocexprlemss 7902 . . . . . . . . . 10  |-  ( ph  ->  A  C_  P. )
87ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  ->  A  C_  P. )
9 simprl 529 . . . . . . . . 9  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  -> 
s  e.  A )
108, 9sseldd 3225 . . . . . . . 8  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  -> 
s  e.  P. )
11 prop 7662 . . . . . . . 8  |-  ( s  e.  P.  ->  <. ( 1st `  s ) ,  ( 2nd `  s
) >.  e.  P. )
1210, 11syl 14 . . . . . . 7  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  ->  <. ( 1st `  s
) ,  ( 2nd `  s ) >.  e.  P. )
13 simprr 531 . . . . . . 7  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  -> 
q  e.  ( 1st `  s ) )
14 prnmaxl 7675 . . . . . . 7  |-  ( (
<. ( 1st `  s
) ,  ( 2nd `  s ) >.  e.  P.  /\  q  e.  ( 1st `  s ) )  ->  E. r  e.  ( 1st `  s ) q 
<Q  r )
1512, 13, 14syl2anc 411 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  ->  E. r  e.  ( 1st `  s ) q 
<Q  r )
16 ltrelnq 7552 . . . . . . . . 9  |-  <Q  C_  ( Q.  X.  Q. )
1716brel 4771 . . . . . . . 8  |-  ( q 
<Q  r  ->  ( q  e.  Q.  /\  r  e.  Q. ) )
1817simprd 114 . . . . . . 7  |-  ( q 
<Q  r  ->  r  e. 
Q. )
1918ad2antll 491 . . . . . 6  |-  ( ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  /\  ( r  e.  ( 1st `  s )  /\  q  <Q  r
) )  ->  r  e.  Q. )
20 simprr 531 . . . . . . 7  |-  ( ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  /\  ( r  e.  ( 1st `  s )  /\  q  <Q  r
) )  ->  q  <Q  r )
21 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  /\  ( r  e.  ( 1st `  s )  /\  q  <Q  r
) )  ->  s  e.  A )
22 simprl 529 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  /\  ( r  e.  ( 1st `  s )  /\  q  <Q  r
) )  ->  r  e.  ( 1st `  s
) )
23 rspe 2579 . . . . . . . . 9  |-  ( ( s  e.  A  /\  r  e.  ( 1st `  s ) )  ->  E. s  e.  A  r  e.  ( 1st `  s ) )
2421, 22, 23syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  /\  ( r  e.  ( 1st `  s )  /\  q  <Q  r
) )  ->  E. s  e.  A  r  e.  ( 1st `  s ) )
25 suplocexprlemell 7900 . . . . . . . 8  |-  ( r  e.  U. ( 1st " A )  <->  E. s  e.  A  r  e.  ( 1st `  s ) )
2624, 25sylibr 134 . . . . . . 7  |-  ( ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  /\  ( r  e.  ( 1st `  s )  /\  q  <Q  r
) )  ->  r  e.  U. ( 1st " A
) )
2720, 26jca 306 . . . . . 6  |-  ( ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  /\  ( r  e.  ( 1st `  s )  /\  q  <Q  r
) )  ->  (
q  <Q  r  /\  r  e.  U. ( 1st " A
) ) )
2815, 19, 27reximssdv 2634 . . . . 5  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A ) )  /\  ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )  ->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )
293, 28rexlimddv 2653 . . . 4  |-  ( ( ( ph  /\  q  e.  Q. )  /\  q  e.  U. ( 1st " A
) )  ->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  U. ( 1st " A
) ) )
3029ex 115 . . 3  |-  ( (
ph  /\  q  e.  Q. )  ->  ( q  e.  U. ( 1st " A )  ->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  U. ( 1st " A
) ) ) )
31 simprr 531 . . . . . . 7  |-  ( ( ( ph  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  r  e.  U. ( 1st " A
) ) )  -> 
r  e.  U. ( 1st " A ) )
3231, 25sylib 122 . . . . . 6  |-  ( ( ( ph  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  r  e.  U. ( 1st " A
) ) )  ->  E. s  e.  A  r  e.  ( 1st `  s ) )
33 simprl 529 . . . . . . . . 9  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  -> 
s  e.  A )
34 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  -> 
q  <Q  r )
357ad3antrrr 492 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  ->  A  C_  P. )
3635, 33sseldd 3225 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  -> 
s  e.  P. )
3736, 11syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  ->  <. ( 1st `  s
) ,  ( 2nd `  s ) >.  e.  P. )
38 simprr 531 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  -> 
r  e.  ( 1st `  s ) )
39 prcdnql 7671 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  s
) ,  ( 2nd `  s ) >.  e.  P.  /\  r  e.  ( 1st `  s ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  s ) ) )
4037, 38, 39syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  s ) ) )
4134, 40mpd 13 . . . . . . . . 9  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  -> 
q  e.  ( 1st `  s ) )
42 19.8a 1636 . . . . . . . . 9  |-  ( ( s  e.  A  /\  q  e.  ( 1st `  s ) )  ->  E. s ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )
4333, 41, 42syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  ->  E. s ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )
44 df-rex 2514 . . . . . . . 8  |-  ( E. s  e.  A  q  e.  ( 1st `  s
)  <->  E. s ( s  e.  A  /\  q  e.  ( 1st `  s
) ) )
4543, 44sylibr 134 . . . . . . 7  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  ->  E. s  e.  A  q  e.  ( 1st `  s ) )
4645, 1sylibr 134 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  Q. )  /\  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  ( s  e.  A  /\  r  e.  ( 1st `  s
) ) )  -> 
q  e.  U. ( 1st " A ) )
4732, 46rexlimddv 2653 . . . . 5  |-  ( ( ( ph  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  r  e.  U. ( 1st " A
) ) )  -> 
q  e.  U. ( 1st " A ) )
4847ex 115 . . . 4  |-  ( (
ph  /\  q  e.  Q. )  ->  ( ( q  <Q  r  /\  r  e.  U. ( 1st " A ) )  ->  q  e.  U. ( 1st " A ) ) )
4948rexlimdvw 2652 . . 3  |-  ( (
ph  /\  q  e.  Q. )  ->  ( E. r  e.  Q.  (
q  <Q  r  /\  r  e.  U. ( 1st " A
) )  ->  q  e.  U. ( 1st " A
) ) )
5030, 49impbid 129 . 2  |-  ( (
ph  /\  q  e.  Q. )  ->  ( q  e.  U. ( 1st " A )  <->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  U. ( 1st " A
) ) ) )
5150ralrimiva 2603 1  |-  ( ph  ->  A. q  e.  Q.  ( q  e.  U. ( 1st " A )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509    C_ wss 3197   <.cop 3669   U.cuni 3888   class class class wbr 4083   "cima 4722   ` cfv 5318   1stc1st 6284   2ndc2nd 6285   Q.cnq 7467    <Q cltq 7472   P.cnp 7478    <P cltp 7482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1st 6286  df-2nd 6287  df-qs 6686  df-ni 7491  df-nqqs 7535  df-ltnqqs 7540  df-inp 7653  df-iltp 7657
This theorem is referenced by:  suplocexprlemex  7909
  Copyright terms: Public domain W3C validator