ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb8h Unicode version

Theorem sb8h 1878
Description: Substitution of variable in universal quantifier. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Jim Kingdon, 15-Jan-2018.)
Hypothesis
Ref Expression
sb8h.1  |-  ( ph  ->  A. y ph )
Assertion
Ref Expression
sb8h  |-  ( A. x ph  <->  A. y [ y  /  x ] ph )

Proof of Theorem sb8h
StepHypRef Expression
1 sb8h.1 . 2  |-  ( ph  ->  A. y ph )
21hbsb3 1832 . 2  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
3 sbequ12 1795 . 2  |-  ( x  =  y  ->  ( ph 
<->  [ y  /  x ] ph ) )
41, 2, 3cbvalh 1777 1  |-  ( A. x ph  <->  A. y [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371   [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787
This theorem is referenced by:  sbhb  1969  sb8euh  2078
  Copyright terms: Public domain W3C validator