| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sb8h | Unicode version | ||
| Description: Substitution of variable in universal quantifier. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Jim Kingdon, 15-Jan-2018.) | 
| Ref | Expression | 
|---|---|
| sb8h.1 | 
 | 
| Ref | Expression | 
|---|---|
| sb8h | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sb8h.1 | 
. 2
 | |
| 2 | 1 | hbsb3 1822 | 
. 2
 | 
| 3 | sbequ12 1785 | 
. 2
 | |
| 4 | 1, 2, 3 | cbvalh 1767 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: sbhb 1959 sb8euh 2068 | 
| Copyright terms: Public domain | W3C validator |