| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sb6rf | Unicode version | ||
| Description: Reversed substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| sb5rf.1 |
|
| Ref | Expression |
|---|---|
| sb6rf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb5rf.1 |
. . 3
| |
| 2 | sbequ1 1792 |
. . . . 5
| |
| 3 | 2 | equcoms 1732 |
. . . 4
|
| 4 | 3 | com12 30 |
. . 3
|
| 5 | 1, 4 | alrimih 1493 |
. 2
|
| 6 | sb2 1791 |
. . 3
| |
| 7 | 1 | sbid2h 1873 |
. . 3
|
| 8 | 6, 7 | sylib 122 |
. 2
|
| 9 | 5, 8 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 |
| This theorem is referenced by: 2sb6rf 2019 eu1 2080 |
| Copyright terms: Public domain | W3C validator |