| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sbequ12 | Unicode version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| sbequ12 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbequ1 1782 | 
. 2
 | |
| 2 | sbequ2 1783 | 
. 2
 | |
| 3 | 1, 2 | impbid 129 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 | 
| This theorem is referenced by: sbequ12r 1786 sbequ12a 1787 sbid 1788 ax16 1827 sb8h 1868 sb8eh 1869 sb8 1870 sb8e 1871 ax16ALT 1873 sbco 1987 sbcomxyyz 1991 sb9v 1997 sb6a 2007 mopick 2123 clelab 2322 sbab 2324 nfabdw 2358 cbvralf 2721 cbvrexf 2722 cbvralsv 2745 cbvrexsv 2746 cbvrab 2761 sbhypf 2813 mob2 2944 reu2 2952 reu6 2953 sbcralt 3066 sbcrext 3067 sbcralg 3068 sbcreug 3070 cbvreucsf 3149 cbvrabcsf 3150 cbvopab1 4106 cbvopab1s 4108 csbopabg 4111 cbvmptf 4127 cbvmpt 4128 opelopabsb 4294 frind 4387 tfis 4619 findes 4639 opeliunxp 4718 ralxpf 4812 rexxpf 4813 cbviota 5224 csbiotag 5251 cbvriota 5888 csbriotag 5890 abrexex2g 6177 opabex3d 6178 opabex3 6179 abrexex2 6181 dfoprab4f 6251 finexdc 6963 ssfirab 6997 uzind4s 9664 zsupcllemstep 10319 bezoutlemmain 12165 nnwosdc 12206 cbvrald 15434 bj-bdfindes 15595 bj-findes 15627 | 
| Copyright terms: Public domain | W3C validator |