| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbequ12 | Unicode version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbequ12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ1 1791 |
. 2
| |
| 2 | sbequ2 1792 |
. 2
| |
| 3 | 1, 2 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 |
| This theorem is referenced by: sbequ12r 1795 sbequ12a 1796 sbid 1797 ax16 1836 sb8h 1877 sb8eh 1878 sb8 1879 sb8e 1880 ax16ALT 1882 sbco 1996 sbcomxyyz 2000 sb9v 2006 sb6a 2016 mopick 2132 clelab 2331 sbab 2333 nfabdw 2367 cbvralf 2730 cbvrexf 2731 cbvralsv 2754 cbvrexsv 2755 cbvrab 2770 sbhypf 2822 mob2 2953 reu2 2961 reu6 2962 sbcralt 3075 sbcrext 3076 sbcralg 3077 sbcreug 3079 cbvreucsf 3158 cbvrabcsf 3159 cbvopab1 4117 cbvopab1s 4119 csbopabg 4122 cbvmptf 4138 cbvmpt 4139 opelopabsb 4306 frind 4399 tfis 4631 findes 4651 opeliunxp 4730 ralxpf 4824 rexxpf 4825 cbviota 5237 csbiotag 5264 cbvriota 5910 csbriotag 5912 abrexex2g 6205 opabex3d 6206 opabex3 6207 abrexex2 6209 dfoprab4f 6279 finexdc 6999 ssfirab 7033 uzind4s 9711 zsupcllemstep 10372 bezoutlemmain 12319 nnwosdc 12360 cbvrald 15724 bj-bdfindes 15885 bj-findes 15917 |
| Copyright terms: Public domain | W3C validator |