| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbequ12 | Unicode version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbequ12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ1 1814 |
. 2
| |
| 2 | sbequ2 1815 |
. 2
| |
| 3 | 1, 2 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 |
| This theorem is referenced by: sbequ12r 1818 sbequ12a 1819 sbid 1820 ax16 1859 sb8h 1900 sb8eh 1901 sb8 1902 sb8e 1903 ax16ALT 1905 sbco 2019 sbcomxyyz 2023 sb9v 2029 sb6a 2039 mopick 2156 clelab 2355 sbab 2357 nfabdw 2391 cbvralf 2756 cbvrexf 2757 cbvralsv 2781 cbvrexsv 2782 cbvrab 2797 sbhypf 2850 mob2 2983 reu2 2991 reu6 2992 sbcralt 3105 sbcrext 3106 sbcralg 3107 sbcreug 3109 cbvreucsf 3189 cbvrabcsf 3190 cbvopab1 4157 cbvopab1s 4159 csbopabg 4162 cbvmptf 4178 cbvmpt 4179 opelopabsb 4348 frind 4443 tfis 4675 findes 4695 opeliunxp 4774 ralxpf 4868 rexxpf 4869 cbviota 5283 csbiotag 5311 cbvriota 5966 csbriotag 5968 abrexex2g 6265 opabex3d 6266 opabex3 6267 abrexex2 6269 dfoprab4f 6339 finexdc 7064 ssfirab 7098 uzind4s 9785 zsupcllemstep 10449 bezoutlemmain 12519 nnwosdc 12560 cbvrald 16152 bj-bdfindes 16312 bj-findes 16344 |
| Copyright terms: Public domain | W3C validator |