![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbequ12 | Unicode version |
Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbequ12 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ1 1698 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sbequ2 1699 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbid 127 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 |
This theorem depends on definitions: df-bi 115 df-sb 1693 |
This theorem is referenced by: sbequ12r 1702 sbequ12a 1703 sbid 1704 ax16 1741 sb8h 1782 sb8eh 1783 sb8 1784 sb8e 1785 ax16ALT 1787 sbco 1890 sbcomxyyz 1894 sb9v 1902 sb6a 1912 mopick 2026 clelab 2212 sbab 2214 cbvralf 2584 cbvrexf 2585 cbvralsv 2601 cbvrexsv 2602 cbvrab 2617 sbhypf 2668 mob2 2795 reu2 2803 reu6 2804 sbcralt 2915 sbcrext 2916 sbcralg 2917 sbcreug 2919 cbvreucsf 2992 cbvrabcsf 2993 cbvopab1 3911 cbvopab1s 3913 csbopabg 3916 cbvmptf 3932 cbvmpt 3933 opelopabsb 4087 frind 4179 tfis 4398 findes 4418 opeliunxp 4493 ralxpf 4582 rexxpf 4583 cbviota 4985 csbiotag 5008 cbvriota 5618 csbriotag 5620 abrexex2g 5891 opabex3d 5892 opabex3 5893 abrexex2 5895 dfoprab4f 5963 finexdc 6616 ssfirab 6641 uzind4s 9076 zsupcllemstep 11215 bezoutlemmain 11261 cbvrald 11643 bj-bdfindes 11799 bj-findes 11831 |
Copyright terms: Public domain | W3C validator |