| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbequ12 | Unicode version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbequ12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ1 1792 |
. 2
| |
| 2 | sbequ2 1793 |
. 2
| |
| 3 | 1, 2 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 |
| This theorem is referenced by: sbequ12r 1796 sbequ12a 1797 sbid 1798 ax16 1837 sb8h 1878 sb8eh 1879 sb8 1880 sb8e 1881 ax16ALT 1883 sbco 1997 sbcomxyyz 2001 sb9v 2007 sb6a 2017 mopick 2134 clelab 2333 sbab 2335 nfabdw 2369 cbvralf 2733 cbvrexf 2734 cbvralsv 2758 cbvrexsv 2759 cbvrab 2774 sbhypf 2827 mob2 2960 reu2 2968 reu6 2969 sbcralt 3082 sbcrext 3083 sbcralg 3084 sbcreug 3086 cbvreucsf 3166 cbvrabcsf 3167 cbvopab1 4133 cbvopab1s 4135 csbopabg 4138 cbvmptf 4154 cbvmpt 4155 opelopabsb 4324 frind 4417 tfis 4649 findes 4669 opeliunxp 4748 ralxpf 4842 rexxpf 4843 cbviota 5256 csbiotag 5283 cbvriota 5933 csbriotag 5935 abrexex2g 6228 opabex3d 6229 opabex3 6230 abrexex2 6232 dfoprab4f 6302 finexdc 7025 ssfirab 7059 uzind4s 9746 zsupcllemstep 10409 bezoutlemmain 12434 nnwosdc 12475 cbvrald 15924 bj-bdfindes 16084 bj-findes 16116 |
| Copyright terms: Public domain | W3C validator |