| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbequ12 | Unicode version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbequ12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ1 1782 |
. 2
| |
| 2 | sbequ2 1783 |
. 2
| |
| 3 | 1, 2 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 |
| This theorem is referenced by: sbequ12r 1786 sbequ12a 1787 sbid 1788 ax16 1827 sb8h 1868 sb8eh 1869 sb8 1870 sb8e 1871 ax16ALT 1873 sbco 1987 sbcomxyyz 1991 sb9v 1997 sb6a 2007 mopick 2123 clelab 2322 sbab 2324 nfabdw 2358 cbvralf 2721 cbvrexf 2722 cbvralsv 2745 cbvrexsv 2746 cbvrab 2761 sbhypf 2813 mob2 2944 reu2 2952 reu6 2953 sbcralt 3066 sbcrext 3067 sbcralg 3068 sbcreug 3070 cbvreucsf 3149 cbvrabcsf 3150 cbvopab1 4107 cbvopab1s 4109 csbopabg 4112 cbvmptf 4128 cbvmpt 4129 opelopabsb 4295 frind 4388 tfis 4620 findes 4640 opeliunxp 4719 ralxpf 4813 rexxpf 4814 cbviota 5225 csbiotag 5252 cbvriota 5891 csbriotag 5893 abrexex2g 6186 opabex3d 6187 opabex3 6188 abrexex2 6190 dfoprab4f 6260 finexdc 6972 ssfirab 7006 uzind4s 9681 zsupcllemstep 10336 bezoutlemmain 12190 nnwosdc 12231 cbvrald 15518 bj-bdfindes 15679 bj-findes 15711 |
| Copyright terms: Public domain | W3C validator |