ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc6 Unicode version

Theorem sbc6 2986
Description: An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Proof shortened by Eric Schmidt, 17-Jan-2007.)
Hypothesis
Ref Expression
sbc6.1  |-  A  e. 
_V
Assertion
Ref Expression
sbc6  |-  ( [. A  /  x ]. ph  <->  A. x
( x  =  A  ->  ph ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem sbc6
StepHypRef Expression
1 sbc6.1 . 2  |-  A  e. 
_V
2 sbc6g 2985 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ph  <->  A. x ( x  =  A  ->  ph )
) )
31, 2ax-mp 5 1  |-  ( [. A  /  x ]. ph  <->  A. x
( x  =  A  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351    = wceq 1353    e. wcel 2146   _Vcvv 2735   [.wsbc 2960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-sbc 2961
This theorem is referenced by:  intab  3869
  Copyright terms: Public domain W3C validator