ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc6 Unicode version

Theorem sbc6 2976
Description: An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Proof shortened by Eric Schmidt, 17-Jan-2007.)
Hypothesis
Ref Expression
sbc6.1  |-  A  e. 
_V
Assertion
Ref Expression
sbc6  |-  ( [. A  /  x ]. ph  <->  A. x
( x  =  A  ->  ph ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem sbc6
StepHypRef Expression
1 sbc6.1 . 2  |-  A  e. 
_V
2 sbc6g 2975 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ph  <->  A. x ( x  =  A  ->  ph )
) )
31, 2ax-mp 5 1  |-  ( [. A  /  x ]. ph  <->  A. x
( x  =  A  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341    = wceq 1343    e. wcel 2136   _Vcvv 2726   [.wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952
This theorem is referenced by:  intab  3853
  Copyright terms: Public domain W3C validator