ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc6g Unicode version

Theorem sbc6g 2900
Description: An equivalence for class substitution. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
sbc6g  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A. x ( x  =  A  ->  ph )
) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem sbc6g
StepHypRef Expression
1 nfe1 1453 . . 3  |-  F/ x E. x ( x  =  A  /\  ph )
2 ceqex 2780 . . 3  |-  ( x  =  A  ->  ( ph 
<->  E. x ( x  =  A  /\  ph ) ) )
31, 2ceqsalg 2683 . 2  |-  ( A  e.  V  ->  ( A. x ( x  =  A  ->  ph )  <->  E. x
( x  =  A  /\  ph ) ) )
4 sbc5 2899 . 2  |-  ( [. A  /  x ]. ph  <->  E. x
( x  =  A  /\  ph ) )
53, 4syl6rbbr 198 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A. x ( x  =  A  ->  ph )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1310    = wceq 1312   E.wex 1449    e. wcel 1461   [.wsbc 2876
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-v 2657  df-sbc 2877
This theorem is referenced by:  sbc6  2901  sbciegft  2905  ralsnsg  3525  ralsns  3526  fz1sbc  9763
  Copyright terms: Public domain W3C validator