| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbc6g | Unicode version | ||
| Description: An equivalence for class substitution. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| sbc6g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc5 3029 |
. 2
| |
| 2 | nfe1 1520 |
. . 3
| |
| 3 | ceqex 2907 |
. . 3
| |
| 4 | 2, 3 | ceqsalg 2805 |
. 2
|
| 5 | 1, 4 | bitr4id 199 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-sbc 3006 |
| This theorem is referenced by: sbc6 3031 sbciegft 3036 ralsnsg 3680 ralsns 3681 fz1sbc 10253 |
| Copyright terms: Public domain | W3C validator |