| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbc6g | Unicode version | ||
| Description: An equivalence for class substitution. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| sbc6g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc5 3013 |
. 2
| |
| 2 | nfe1 1510 |
. . 3
| |
| 3 | ceqex 2891 |
. . 3
| |
| 4 | 2, 3 | ceqsalg 2791 |
. 2
|
| 5 | 1, 4 | bitr4id 199 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sbc 2990 |
| This theorem is referenced by: sbc6 3015 sbciegft 3020 ralsnsg 3659 ralsns 3660 fz1sbc 10171 |
| Copyright terms: Public domain | W3C validator |