ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc6g Unicode version

Theorem sbc6g 3053
Description: An equivalence for class substitution. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
sbc6g  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A. x ( x  =  A  ->  ph )
) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem sbc6g
StepHypRef Expression
1 sbc5 3052 . 2  |-  ( [. A  /  x ]. ph  <->  E. x
( x  =  A  /\  ph ) )
2 nfe1 1542 . . 3  |-  F/ x E. x ( x  =  A  /\  ph )
3 ceqex 2930 . . 3  |-  ( x  =  A  ->  ( ph 
<->  E. x ( x  =  A  /\  ph ) ) )
42, 3ceqsalg 2828 . 2  |-  ( A  e.  V  ->  ( A. x ( x  =  A  ->  ph )  <->  E. x
( x  =  A  /\  ph ) ) )
51, 4bitr4id 199 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A. x ( x  =  A  ->  ph )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393    = wceq 1395   E.wex 1538    e. wcel 2200   [.wsbc 3028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029
This theorem is referenced by:  sbc6  3054  sbciegft  3059  ralsnsg  3703  ralsns  3704  fz1sbc  10288
  Copyright terms: Public domain W3C validator