ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcgf Unicode version

Theorem sbcgf 3053
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypothesis
Ref Expression
sbcgf.1  |-  F/ x ph
Assertion
Ref Expression
sbcgf  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ph ) )

Proof of Theorem sbcgf
StepHypRef Expression
1 sbcgf.1 . 2  |-  F/ x ph
2 sbctt 3052 . 2  |-  ( ( A  e.  V  /\  F/ x ph )  -> 
( [. A  /  x ]. ph  <->  ph ) )
31, 2mpan2 425 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   F/wnf 1471    e. wcel 2164   [.wsbc 2985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sbc 2986
This theorem is referenced by:  sbc19.21g  3054  sbcg  3055  sbcabel  3067
  Copyright terms: Public domain W3C validator