ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcgf Unicode version

Theorem sbcgf 3057
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypothesis
Ref Expression
sbcgf.1  |-  F/ x ph
Assertion
Ref Expression
sbcgf  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ph ) )

Proof of Theorem sbcgf
StepHypRef Expression
1 sbcgf.1 . 2  |-  F/ x ph
2 sbctt 3056 . 2  |-  ( ( A  e.  V  /\  F/ x ph )  -> 
( [. A  /  x ]. ph  <->  ph ) )
31, 2mpan2 425 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   F/wnf 1474    e. wcel 2167   [.wsbc 2989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990
This theorem is referenced by:  sbc19.21g  3058  sbcg  3059  sbcabel  3071
  Copyright terms: Public domain W3C validator