ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcabel Unicode version

Theorem sbcabel 3036
Description: Interchange class substitution and class abstraction. (Contributed by NM, 5-Nov-2005.)
Hypothesis
Ref Expression
sbcabel.1  |-  F/_ x B
Assertion
Ref Expression
sbcabel  |-  ( A  e.  V  ->  ( [. A  /  x ]. { y  |  ph }  e.  B  <->  { y  |  [. A  /  x ]. ph }  e.  B
) )
Distinct variable groups:    y, A    x, y
Allowed substitution hints:    ph( x, y)    A( x)    B( x, y)    V( x, y)

Proof of Theorem sbcabel
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elex 2741 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 sbcexg 3009 . . . 4  |-  ( A  e.  _V  ->  ( [. A  /  x ]. E. w ( w  =  { y  | 
ph }  /\  w  e.  B )  <->  E. w [. A  /  x ]. ( w  =  {
y  |  ph }  /\  w  e.  B
) ) )
3 sbcang 2998 . . . . . 6  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ( w  =  {
y  |  ph }  /\  w  e.  B
)  <->  ( [. A  /  x ]. w  =  { y  |  ph }  /\  [. A  /  x ]. w  e.  B
) ) )
4 sbcalg 3007 . . . . . . . . 9  |-  ( A  e.  _V  ->  ( [. A  /  x ]. A. y ( y  e.  w  <->  ph )  <->  A. y [. A  /  x ]. ( y  e.  w  <->  ph ) ) )
5 sbcbig 3001 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ( y  e.  w  <->  ph )  <->  ( [. A  /  x ]. y  e.  w  <->  [. A  /  x ]. ph ) ) )
6 sbcg 3024 . . . . . . . . . . . 12  |-  ( A  e.  _V  ->  ( [. A  /  x ]. y  e.  w  <->  y  e.  w ) )
76bibi1d 232 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  (
( [. A  /  x ]. y  e.  w  <->  [. A  /  x ]. ph )  <->  ( y  e.  w  <->  [. A  /  x ]. ph ) ) )
85, 7bitrd 187 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ( y  e.  w  <->  ph )  <->  ( y  e.  w  <->  [. A  /  x ]. ph ) ) )
98albidv 1817 . . . . . . . . 9  |-  ( A  e.  _V  ->  ( A. y [. A  /  x ]. ( y  e.  w  <->  ph )  <->  A. y
( y  e.  w  <->  [. A  /  x ]. ph ) ) )
104, 9bitrd 187 . . . . . . . 8  |-  ( A  e.  _V  ->  ( [. A  /  x ]. A. y ( y  e.  w  <->  ph )  <->  A. y
( y  e.  w  <->  [. A  /  x ]. ph ) ) )
11 abeq2 2279 . . . . . . . . 9  |-  ( w  =  { y  | 
ph }  <->  A. y
( y  e.  w  <->  ph ) )
1211sbcbii 3014 . . . . . . . 8  |-  ( [. A  /  x ]. w  =  { y  |  ph } 
<-> 
[. A  /  x ]. A. y ( y  e.  w  <->  ph ) )
13 abeq2 2279 . . . . . . . 8  |-  ( w  =  { y  | 
[. A  /  x ]. ph }  <->  A. y
( y  e.  w  <->  [. A  /  x ]. ph ) )
1410, 12, 133bitr4g 222 . . . . . . 7  |-  ( A  e.  _V  ->  ( [. A  /  x ]. w  =  {
y  |  ph }  <->  w  =  { y  | 
[. A  /  x ]. ph } ) )
15 sbcabel.1 . . . . . . . . 9  |-  F/_ x B
1615nfcri 2306 . . . . . . . 8  |-  F/ x  w  e.  B
1716sbcgf 3022 . . . . . . 7  |-  ( A  e.  _V  ->  ( [. A  /  x ]. w  e.  B  <->  w  e.  B ) )
1814, 17anbi12d 470 . . . . . 6  |-  ( A  e.  _V  ->  (
( [. A  /  x ]. w  =  {
y  |  ph }  /\  [. A  /  x ]. w  e.  B
)  <->  ( w  =  { y  |  [. A  /  x ]. ph }  /\  w  e.  B
) ) )
193, 18bitrd 187 . . . . 5  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ( w  =  {
y  |  ph }  /\  w  e.  B
)  <->  ( w  =  { y  |  [. A  /  x ]. ph }  /\  w  e.  B
) ) )
2019exbidv 1818 . . . 4  |-  ( A  e.  _V  ->  ( E. w [. A  /  x ]. ( w  =  { y  |  ph }  /\  w  e.  B
)  <->  E. w ( w  =  { y  | 
[. A  /  x ]. ph }  /\  w  e.  B ) ) )
212, 20bitrd 187 . . 3  |-  ( A  e.  _V  ->  ( [. A  /  x ]. E. w ( w  =  { y  | 
ph }  /\  w  e.  B )  <->  E. w
( w  =  {
y  |  [. A  /  x ]. ph }  /\  w  e.  B
) ) )
22 df-clel 2166 . . . 4  |-  ( { y  |  ph }  e.  B  <->  E. w ( w  =  { y  | 
ph }  /\  w  e.  B ) )
2322sbcbii 3014 . . 3  |-  ( [. A  /  x ]. {
y  |  ph }  e.  B  <->  [. A  /  x ]. E. w ( w  =  { y  | 
ph }  /\  w  e.  B ) )
24 df-clel 2166 . . 3  |-  ( { y  |  [. A  /  x ]. ph }  e.  B  <->  E. w ( w  =  { y  | 
[. A  /  x ]. ph }  /\  w  e.  B ) )
2521, 23, 243bitr4g 222 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. { y  |  ph }  e.  B  <->  { y  |  [. A  /  x ]. ph }  e.  B
) )
261, 25syl 14 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. { y  |  ph }  e.  B  <->  { y  |  [. A  /  x ]. ph }  e.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141   {cab 2156   F/_wnfc 2299   _Vcvv 2730   [.wsbc 2955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956
This theorem is referenced by:  csbexga  4117
  Copyright terms: Public domain W3C validator