ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcg Unicode version

Theorem sbcg 3033
Description: Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3031. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
sbcg  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ph ) )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    V( x)

Proof of Theorem sbcg
StepHypRef Expression
1 nfv 1528 . 2  |-  F/ x ph
21sbcgf 3031 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2148   [.wsbc 2963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-sbc 2964
This theorem is referenced by:  sbcabel  3045  csbunig  3818  csbxpg  4708  sbcfung  5241  f1od2  6236
  Copyright terms: Public domain W3C validator