ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcg Unicode version

Theorem sbcg 2981
Description: Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 2979. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
sbcg  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ph ) )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    V( x)

Proof of Theorem sbcg
StepHypRef Expression
1 nfv 1509 . 2  |-  F/ x ph
21sbcgf 2979 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 1481   [.wsbc 2912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-sbc 2913
This theorem is referenced by:  sbcabel  2993  csbunig  3750  csbxpg  4626  sbcfung  5153  f1od2  6138
  Copyright terms: Public domain W3C validator