ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbctt Unicode version

Theorem sbctt 3056
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
sbctt  |-  ( ( A  e.  V  /\  F/ x ph )  -> 
( [. A  /  x ]. ph  <->  ph ) )

Proof of Theorem sbctt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2992 . . . . 5  |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ]. ph ) )
21bibi1d 233 . . . 4  |-  ( y  =  A  ->  (
( [ y  /  x ] ph  <->  ph )  <->  ( [. A  /  x ]. ph  <->  ph ) ) )
32imbi2d 230 . . 3  |-  ( y  =  A  ->  (
( F/ x ph  ->  ( [ y  /  x ] ph  <->  ph ) )  <-> 
( F/ x ph  ->  ( [. A  /  x ]. ph  <->  ph ) ) ) )
4 sbft 1862 . . 3  |-  ( F/ x ph  ->  ( [ y  /  x ] ph  <->  ph ) )
53, 4vtoclg 2824 . 2  |-  ( A  e.  V  ->  ( F/ x ph  ->  ( [. A  /  x ]. ph  <->  ph ) ) )
65imp 124 1  |-  ( ( A  e.  V  /\  F/ x ph )  -> 
( [. A  /  x ]. ph  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   F/wnf 1474   [wsb 1776    e. wcel 2167   [.wsbc 2989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990
This theorem is referenced by:  sbcgf  3057  csbtt  3096
  Copyright terms: Public domain W3C validator