ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbctt Unicode version

Theorem sbctt 3021
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
sbctt  |-  ( ( A  e.  V  /\  F/ x ph )  -> 
( [. A  /  x ]. ph  <->  ph ) )

Proof of Theorem sbctt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2958 . . . . 5  |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ]. ph ) )
21bibi1d 232 . . . 4  |-  ( y  =  A  ->  (
( [ y  /  x ] ph  <->  ph )  <->  ( [. A  /  x ]. ph  <->  ph ) ) )
32imbi2d 229 . . 3  |-  ( y  =  A  ->  (
( F/ x ph  ->  ( [ y  /  x ] ph  <->  ph ) )  <-> 
( F/ x ph  ->  ( [. A  /  x ]. ph  <->  ph ) ) ) )
4 sbft 1841 . . 3  |-  ( F/ x ph  ->  ( [ y  /  x ] ph  <->  ph ) )
53, 4vtoclg 2790 . 2  |-  ( A  e.  V  ->  ( F/ x ph  ->  ( [. A  /  x ]. ph  <->  ph ) ) )
65imp 123 1  |-  ( ( A  e.  V  /\  F/ x ph )  -> 
( [. A  /  x ]. ph  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   F/wnf 1453   [wsb 1755    e. wcel 2141   [.wsbc 2955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956
This theorem is referenced by:  sbcgf  3022  csbtt  3061
  Copyright terms: Public domain W3C validator