ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcid Unicode version

Theorem sbcid 2966
Description: An identity theorem for substitution. See sbid 1762. (Contributed by Mario Carneiro, 18-Feb-2017.)
Assertion
Ref Expression
sbcid  |-  ( [. x  /  x ]. ph  <->  ph )

Proof of Theorem sbcid
StepHypRef Expression
1 sbsbc 2955 . 2  |-  ( [ x  /  x ] ph 
<-> 
[. x  /  x ]. ph )
2 sbid 1762 . 2  |-  ( [ x  /  x ] ph 
<-> 
ph )
31, 2bitr3i 185 1  |-  ( [. x  /  x ]. ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   [wsb 1750   [.wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-sbc 2952
This theorem is referenced by:  csbid  3053
  Copyright terms: Public domain W3C validator