ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcid Unicode version

Theorem sbcid 3005
Description: An identity theorem for substitution. See sbid 1788. (Contributed by Mario Carneiro, 18-Feb-2017.)
Assertion
Ref Expression
sbcid  |-  ( [. x  /  x ]. ph  <->  ph )

Proof of Theorem sbcid
StepHypRef Expression
1 sbsbc 2993 . 2  |-  ( [ x  /  x ] ph 
<-> 
[. x  /  x ]. ph )
2 sbid 1788 . 2  |-  ( [ x  /  x ] ph 
<-> 
ph )
31, 2bitr3i 186 1  |-  ( [. x  /  x ]. ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1776   [.wsbc 2989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-sbc 2990
This theorem is referenced by:  csbid  3092
  Copyright terms: Public domain W3C validator