Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcid | Unicode version |
Description: An identity theorem for substitution. See sbid 1772. (Contributed by Mario Carneiro, 18-Feb-2017.) |
Ref | Expression |
---|---|
sbcid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbsbc 2964 | . 2 | |
2 | sbid 1772 | . 2 | |
3 | 1, 2 | bitr3i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 wsb 1760 wsbc 2960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-sbc 2961 |
This theorem is referenced by: csbid 3063 |
Copyright terms: Public domain | W3C validator |