ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbc1d Unicode version

Theorem nfsbc1d 2977
Description: Deduction version of nfsbc1 2978. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypothesis
Ref Expression
nfsbc1d.2  |-  ( ph  -> 
F/_ x A )
Assertion
Ref Expression
nfsbc1d  |-  ( ph  ->  F/ x [. A  /  x ]. ps )

Proof of Theorem nfsbc1d
StepHypRef Expression
1 df-sbc 2961 . 2  |-  ( [. A  /  x ]. ps  <->  A  e.  { x  |  ps } )
2 nfsbc1d.2 . . 3  |-  ( ph  -> 
F/_ x A )
3 nfab1 2319 . . . 4  |-  F/_ x { x  |  ps }
43a1i 9 . . 3  |-  ( ph  -> 
F/_ x { x  |  ps } )
52, 4nfeld 2333 . 2  |-  ( ph  ->  F/ x  A  e. 
{ x  |  ps } )
61, 5nfxfrd 1473 1  |-  ( ph  ->  F/ x [. A  /  x ]. ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1458    e. wcel 2146   {cab 2161   F/_wnfc 2304   [.wsbc 2960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-11 1504  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-sbc 2961
This theorem is referenced by:  nfsbc1  2978  nfcsb1d  3086
  Copyright terms: Public domain W3C validator