ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbc1d Unicode version

Theorem nfsbc1d 2971
Description: Deduction version of nfsbc1 2972. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypothesis
Ref Expression
nfsbc1d.2  |-  ( ph  -> 
F/_ x A )
Assertion
Ref Expression
nfsbc1d  |-  ( ph  ->  F/ x [. A  /  x ]. ps )

Proof of Theorem nfsbc1d
StepHypRef Expression
1 df-sbc 2956 . 2  |-  ( [. A  /  x ]. ps  <->  A  e.  { x  |  ps } )
2 nfsbc1d.2 . . 3  |-  ( ph  -> 
F/_ x A )
3 nfab1 2314 . . . 4  |-  F/_ x { x  |  ps }
43a1i 9 . . 3  |-  ( ph  -> 
F/_ x { x  |  ps } )
52, 4nfeld 2328 . 2  |-  ( ph  ->  F/ x  A  e. 
{ x  |  ps } )
61, 5nfxfrd 1468 1  |-  ( ph  ->  F/ x [. A  /  x ]. ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1453    e. wcel 2141   {cab 2156   F/_wnfc 2299   [.wsbc 2955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-sbc 2956
This theorem is referenced by:  nfsbc1  2972  nfcsb1d  3080
  Copyright terms: Public domain W3C validator