ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbc1d Unicode version

Theorem nfsbc1d 2856
Description: Deduction version of nfsbc1 2857. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypothesis
Ref Expression
nfsbc1d.2  |-  ( ph  -> 
F/_ x A )
Assertion
Ref Expression
nfsbc1d  |-  ( ph  ->  F/ x [. A  /  x ]. ps )

Proof of Theorem nfsbc1d
StepHypRef Expression
1 df-sbc 2841 . 2  |-  ( [. A  /  x ]. ps  <->  A  e.  { x  |  ps } )
2 nfsbc1d.2 . . 3  |-  ( ph  -> 
F/_ x A )
3 nfab1 2230 . . . 4  |-  F/_ x { x  |  ps }
43a1i 9 . . 3  |-  ( ph  -> 
F/_ x { x  |  ps } )
52, 4nfeld 2244 . 2  |-  ( ph  ->  F/ x  A  e. 
{ x  |  ps } )
61, 5nfxfrd 1409 1  |-  ( ph  ->  F/ x [. A  /  x ]. ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1394    e. wcel 1438   {cab 2074   F/_wnfc 2215   [.wsbc 2840
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-11 1442  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-sbc 2841
This theorem is referenced by:  nfsbc1  2857  nfcsb1d  2961
  Copyright terms: Public domain W3C validator