Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbid Unicode version

Theorem csbid 3011
 Description: Analog of sbid 1747 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbid

Proof of Theorem csbid
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-csb 3004 . 2
2 sbcid 2924 . . 3
32abbii 2255 . 2
4 abid2 2260 . 2
51, 3, 43eqtri 2164 1
 Colors of variables: wff set class Syntax hints:   wceq 1331   wcel 1480  cab 2125  wsbc 2909  csb 3003 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-sbc 2910  df-csb 3004 This theorem is referenced by:  csbeq1a  3012  fvmpt2  5504  fsumsplitf  11189  ctiunctlemfo  11963
 Copyright terms: Public domain W3C validator