ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbid Unicode version

Theorem csbid 3053
Description: Analog of sbid 1762 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbid  |-  [_ x  /  x ]_ A  =  A

Proof of Theorem csbid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-csb 3046 . 2  |-  [_ x  /  x ]_ A  =  { y  |  [. x  /  x ]. y  e.  A }
2 sbcid 2966 . . 3  |-  ( [. x  /  x ]. y  e.  A  <->  y  e.  A
)
32abbii 2282 . 2  |-  { y  |  [. x  /  x ]. y  e.  A }  =  { y  |  y  e.  A }
4 abid2 2287 . 2  |-  { y  |  y  e.  A }  =  A
51, 3, 43eqtri 2190 1  |-  [_ x  /  x ]_ A  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   {cab 2151   [.wsbc 2951   [_csb 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-sbc 2952  df-csb 3046
This theorem is referenced by:  csbeq1a  3054  fvmpt2  5569  fsumsplitf  11349  ctiunctlemfo  12372
  Copyright terms: Public domain W3C validator