ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbid Unicode version

Theorem csbid 3100
Description: Analog of sbid 1796 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbid  |-  [_ x  /  x ]_ A  =  A

Proof of Theorem csbid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-csb 3093 . 2  |-  [_ x  /  x ]_ A  =  { y  |  [. x  /  x ]. y  e.  A }
2 sbcid 3013 . . 3  |-  ( [. x  /  x ]. y  e.  A  <->  y  e.  A
)
32abbii 2320 . 2  |-  { y  |  [. x  /  x ]. y  e.  A }  =  { y  |  y  e.  A }
4 abid2 2325 . 2  |-  { y  |  y  e.  A }  =  A
51, 3, 43eqtri 2229 1  |-  [_ x  /  x ]_ A  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1372    e. wcel 2175   {cab 2190   [.wsbc 2997   [_csb 3092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-sbc 2998  df-csb 3093
This theorem is referenced by:  csbeq1a  3101  fvmpt2  5662  fsumsplitf  11690  ctiunctlemfo  12781
  Copyright terms: Public domain W3C validator