ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbid Unicode version

Theorem csbid 3057
Description: Analog of sbid 1767 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbid  |-  [_ x  /  x ]_ A  =  A

Proof of Theorem csbid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-csb 3050 . 2  |-  [_ x  /  x ]_ A  =  { y  |  [. x  /  x ]. y  e.  A }
2 sbcid 2970 . . 3  |-  ( [. x  /  x ]. y  e.  A  <->  y  e.  A
)
32abbii 2286 . 2  |-  { y  |  [. x  /  x ]. y  e.  A }  =  { y  |  y  e.  A }
4 abid2 2291 . 2  |-  { y  |  y  e.  A }  =  A
51, 3, 43eqtri 2195 1  |-  [_ x  /  x ]_ A  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   {cab 2156   [.wsbc 2955   [_csb 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-sbc 2956  df-csb 3050
This theorem is referenced by:  csbeq1a  3058  fvmpt2  5579  fsumsplitf  11371  ctiunctlemfo  12394
  Copyright terms: Public domain W3C validator