ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbid Unicode version

Theorem csbid 3101
Description: Analog of sbid 1797 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbid  |-  [_ x  /  x ]_ A  =  A

Proof of Theorem csbid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-csb 3094 . 2  |-  [_ x  /  x ]_ A  =  { y  |  [. x  /  x ]. y  e.  A }
2 sbcid 3014 . . 3  |-  ( [. x  /  x ]. y  e.  A  <->  y  e.  A
)
32abbii 2321 . 2  |-  { y  |  [. x  /  x ]. y  e.  A }  =  { y  |  y  e.  A }
4 abid2 2326 . 2  |-  { y  |  y  e.  A }  =  A
51, 3, 43eqtri 2230 1  |-  [_ x  /  x ]_ A  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2176   {cab 2191   [.wsbc 2998   [_csb 3093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-sbc 2999  df-csb 3094
This theorem is referenced by:  csbeq1a  3102  fvmpt2  5663  fsumsplitf  11719  ctiunctlemfo  12810
  Copyright terms: Public domain W3C validator