Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcid | GIF version |
Description: An identity theorem for substitution. See sbid 1751. (Contributed by Mario Carneiro, 18-Feb-2017.) |
Ref | Expression |
---|---|
sbcid | ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbsbc 2937 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ [𝑥 / 𝑥]𝜑) | |
2 | sbid 1751 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
3 | 1, 2 | bitr3i 185 | 1 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 [wsb 1739 [wsbc 2933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-sbc 2934 |
This theorem is referenced by: csbid 3035 |
Copyright terms: Public domain | W3C validator |