ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcid GIF version

Theorem sbcid 3005
Description: An identity theorem for substitution. See sbid 1788. (Contributed by Mario Carneiro, 18-Feb-2017.)
Assertion
Ref Expression
sbcid ([𝑥 / 𝑥]𝜑𝜑)

Proof of Theorem sbcid
StepHypRef Expression
1 sbsbc 2993 . 2 ([𝑥 / 𝑥]𝜑[𝑥 / 𝑥]𝜑)
2 sbid 1788 . 2 ([𝑥 / 𝑥]𝜑𝜑)
31, 2bitr3i 186 1 ([𝑥 / 𝑥]𝜑𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1776  [wsbc 2989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-sbc 2990
This theorem is referenced by:  csbid  3092
  Copyright terms: Public domain W3C validator