ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcid GIF version

Theorem sbcid 3024
Description: An identity theorem for substitution. See sbid 1800. (Contributed by Mario Carneiro, 18-Feb-2017.)
Assertion
Ref Expression
sbcid ([𝑥 / 𝑥]𝜑𝜑)

Proof of Theorem sbcid
StepHypRef Expression
1 sbsbc 3012 . 2 ([𝑥 / 𝑥]𝜑[𝑥 / 𝑥]𝜑)
2 sbid 1800 . 2 ([𝑥 / 𝑥]𝜑𝜑)
31, 2bitr3i 186 1 ([𝑥 / 𝑥]𝜑𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1788  [wsbc 3008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1473  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-sbc 3009
This theorem is referenced by:  csbid  3112
  Copyright terms: Public domain W3C validator