| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcid | GIF version | ||
| Description: An identity theorem for substitution. See sbid 1800. (Contributed by Mario Carneiro, 18-Feb-2017.) |
| Ref | Expression |
|---|---|
| sbcid | ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbsbc 3012 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ [𝑥 / 𝑥]𝜑) | |
| 2 | sbid 1800 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 3 | 1, 2 | bitr3i 186 | 1 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1788 [wsbc 3008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-sbc 3009 |
| This theorem is referenced by: csbid 3112 |
| Copyright terms: Public domain | W3C validator |