ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcid GIF version

Theorem sbcid 2979
Description: An identity theorem for substitution. See sbid 1774. (Contributed by Mario Carneiro, 18-Feb-2017.)
Assertion
Ref Expression
sbcid ([𝑥 / 𝑥]𝜑𝜑)

Proof of Theorem sbcid
StepHypRef Expression
1 sbsbc 2967 . 2 ([𝑥 / 𝑥]𝜑[𝑥 / 𝑥]𝜑)
2 sbid 1774 . 2 ([𝑥 / 𝑥]𝜑𝜑)
31, 2bitr3i 186 1 ([𝑥 / 𝑥]𝜑𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1762  [wsbc 2963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-sbc 2964
This theorem is referenced by:  csbid  3066
  Copyright terms: Public domain W3C validator