ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcthdv Unicode version

Theorem sbcthdv 2992
Description: Deduction version of sbcth 2991. (Contributed by NM, 30-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
sbcthdv.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
sbcthdv  |-  ( (
ph  /\  A  e.  V )  ->  [. A  /  x ]. ps )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    A( x)    V( x)

Proof of Theorem sbcthdv
StepHypRef Expression
1 sbcthdv.1 . . 3  |-  ( ph  ->  ps )
21alrimiv 1885 . 2  |-  ( ph  ->  A. x ps )
3 spsbc 2989 . 2  |-  ( A  e.  V  ->  ( A. x ps  ->  [. A  /  x ]. ps )
)
42, 3mpan9 281 1  |-  ( (
ph  /\  A  e.  V )  ->  [. A  /  x ]. ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    e. wcel 2160   [.wsbc 2977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-v 2754  df-sbc 2978
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator