ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbequ5 GIF version

Theorem sbequ5 1804
Description: Substitution does not change an identical variable specifier. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 21-Dec-2004.)
Assertion
Ref Expression
sbequ5 ([𝑤 / 𝑧]∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑦)

Proof of Theorem sbequ5
StepHypRef Expression
1 nfae 1741 . 2 𝑧𝑥 𝑥 = 𝑦
21sbf 1799 1 ([𝑤 / 𝑧]∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1370  [wsb 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator