ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbequ5 GIF version

Theorem sbequ5 1770
Description: Substitution does not change an identical variable specifier. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 21-Dec-2004.)
Assertion
Ref Expression
sbequ5 ([𝑤 / 𝑧]∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑦)

Proof of Theorem sbequ5
StepHypRef Expression
1 nfae 1707 . 2 𝑧𝑥 𝑥 = 𝑦
21sbf 1765 1 ([𝑤 / 𝑧]∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1341  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator