ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbequ5 GIF version

Theorem sbequ5 1796
Description: Substitution does not change an identical variable specifier. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 21-Dec-2004.)
Assertion
Ref Expression
sbequ5 ([𝑤 / 𝑧]∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑦)

Proof of Theorem sbequ5
StepHypRef Expression
1 nfae 1733 . 2 𝑧𝑥 𝑥 = 𝑦
21sbf 1791 1 ([𝑤 / 𝑧]∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1362  [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator