ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnae Unicode version

Theorem nfnae 1732
Description: All variables are effectively bound in a distinct variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnae  |-  F/ z  -.  A. x  x  =  y

Proof of Theorem nfnae
StepHypRef Expression
1 nfae 1729 . 2  |-  F/ z A. x  x  =  y
21nfn 1668 1  |-  F/ z  -.  A. x  x  =  y
Colors of variables: wff set class
Syntax hints:   -. wn 3   A.wal 1361   F/wnf 1470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-fal 1369  df-nf 1471
This theorem is referenced by:  sbequ6  1793  dvelimfv  2022  nfsb4t  2025
  Copyright terms: Public domain W3C validator