ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnae Unicode version

Theorem nfnae 1768
Description: All variables are effectively bound in a distinct variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnae  |-  F/ z  -.  A. x  x  =  y

Proof of Theorem nfnae
StepHypRef Expression
1 nfae 1765 . 2  |-  F/ z A. x  x  =  y
21nfn 1704 1  |-  F/ z  -.  A. x  x  =  y
Colors of variables: wff set class
Syntax hints:   -. wn 3   A.wal 1393   F/wnf 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507
This theorem is referenced by:  sbequ6  1829  dvelimfv  2062  nfsb4t  2065
  Copyright terms: Public domain W3C validator