ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnae Unicode version

Theorem nfnae 1700
Description: All variables are effectively bound in a distinct variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnae  |-  F/ z  -.  A. x  x  =  y

Proof of Theorem nfnae
StepHypRef Expression
1 nfae 1697 . 2  |-  F/ z A. x  x  =  y
21nfn 1636 1  |-  F/ z  -.  A. x  x  =  y
Colors of variables: wff set class
Syntax hints:   -. wn 3   A.wal 1329   F/wnf 1436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-fal 1337  df-nf 1437
This theorem is referenced by:  sbequ6  1756  dvelimfv  1986  nfsb4t  1989
  Copyright terms: Public domain W3C validator