| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4ri | Unicode version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4i.1 |
|
| 3bitr4i.2 |
|
| 3bitr4i.3 |
|
| Ref | Expression |
|---|---|
| 3bitr4ri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.2 |
. 2
| |
| 2 | 3bitr4i.1 |
. . 3
| |
| 3 | 3bitr4i.3 |
. . 3
| |
| 4 | 2, 3 | bitr4i 187 |
. 2
|
| 5 | 1, 4 | bitr2i 185 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dcnnOLD 851 excxor 1398 sbequ8 1870 2sb5 2011 2sb6 2012 2sb5rf 2017 2sb6rf 2018 moabs 2103 moanim 2128 2eu4 2147 2eu7 2148 sb8ab 2327 risset 2534 cbvreuvw 2744 reuind 2978 difundi 3425 indifdir 3429 unab 3440 inab 3441 rabeq0 3490 abeq0 3491 inssdif0im 3528 snprc 3698 snssOLD 3759 unipr 3864 uni0b 3875 pwtr 4263 opm 4278 onintexmid 4621 elxp2 4693 opthprc 4726 xpiundir 4734 elvvv 4738 relun 4792 inopab 4810 difopab 4811 ralxpf 4824 rexxpf 4825 dmiun 4887 rniun 5093 cnvresima 5172 imaco 5188 fnopabg 5399 dff1o2 5527 idref 5825 imaiun 5829 opabex3d 6206 opabex3 6207 onntri35 7349 elixx3g 10023 elfz2 10137 elfzuzb 10141 divalgb 12236 1nprm 12436 issubg3 13528 cnfldui 14351 alsconv 16019 |
| Copyright terms: Public domain | W3C validator |