| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4ri | Unicode version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4i.1 |
|
| 3bitr4i.2 |
|
| 3bitr4i.3 |
|
| Ref | Expression |
|---|---|
| 3bitr4ri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.2 |
. 2
| |
| 2 | 3bitr4i.1 |
. . 3
| |
| 3 | 3bitr4i.3 |
. . 3
| |
| 4 | 2, 3 | bitr4i 187 |
. 2
|
| 5 | 1, 4 | bitr2i 185 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dcnnOLD 854 excxor 1420 sbequ8 1893 2sb5 2034 2sb6 2035 2sb5rf 2040 2sb6rf 2041 moabs 2127 moanim 2152 2eu4 2171 2eu7 2172 sb8ab 2351 risset 2558 cbvreuvw 2771 reuind 3008 difundi 3456 indifdir 3460 unab 3471 inab 3472 rabeq0 3521 abeq0 3522 inssdif0im 3559 snprc 3731 snssOLD 3793 unipr 3901 uni0b 3912 pwtr 4304 opm 4319 onintexmid 4664 elxp2 4736 opthprc 4769 xpiundir 4777 elvvv 4781 relun 4835 inopab 4853 difopab 4854 ralxpf 4867 rexxpf 4868 dmiun 4931 rniun 5138 cnvresima 5217 imaco 5233 fnopabg 5446 dff1o2 5576 idref 5879 imaiun 5883 opabex3d 6264 opabex3 6265 onntri35 7418 elixx3g 10093 elfz2 10207 elfzuzb 10211 divalgb 12431 1nprm 12631 issubg3 13724 cnfldui 14547 alsconv 16407 |
| Copyright terms: Public domain | W3C validator |