Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr4ri | Unicode version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
Ref | Expression |
---|---|
3bitr4i.1 | |
3bitr4i.2 | |
3bitr4i.3 |
Ref | Expression |
---|---|
3bitr4ri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4i.2 | . 2 | |
2 | 3bitr4i.1 | . . 3 | |
3 | 3bitr4i.3 | . . 3 | |
4 | 2, 3 | bitr4i 186 | . 2 |
5 | 1, 4 | bitr2i 184 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: dcnnOLD 839 excxor 1368 sbequ8 1835 2sb5 1971 2sb6 1972 2sb5rf 1977 2sb6rf 1978 moabs 2063 moanim 2088 2eu4 2107 2eu7 2108 sb8ab 2288 risset 2494 cbvreuvw 2698 reuind 2931 difundi 3374 indifdir 3378 unab 3389 inab 3390 rabeq0 3438 abeq0 3439 inssdif0im 3476 snprc 3641 snss 3702 unipr 3803 uni0b 3814 pwtr 4197 opm 4212 onintexmid 4550 elxp2 4622 opthprc 4655 xpiundir 4663 elvvv 4667 relun 4721 inopab 4736 difopab 4737 ralxpf 4750 rexxpf 4751 dmiun 4813 rniun 5014 cnvresima 5093 imaco 5109 fnopabg 5311 dff1o2 5437 idref 5725 imaiun 5728 opabex3d 6089 opabex3 6090 onntri35 7193 elixx3g 9837 elfz2 9951 elfzuzb 9954 divalgb 11862 1nprm 12046 alsconv 13956 |
Copyright terms: Public domain | W3C validator |