| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4ri | Unicode version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4i.1 |
|
| 3bitr4i.2 |
|
| 3bitr4i.3 |
|
| Ref | Expression |
|---|---|
| 3bitr4ri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.2 |
. 2
| |
| 2 | 3bitr4i.1 |
. . 3
| |
| 3 | 3bitr4i.3 |
. . 3
| |
| 4 | 2, 3 | bitr4i 187 |
. 2
|
| 5 | 1, 4 | bitr2i 185 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dcnnOLD 851 excxor 1398 sbequ8 1871 2sb5 2012 2sb6 2013 2sb5rf 2018 2sb6rf 2019 moabs 2105 moanim 2130 2eu4 2149 2eu7 2150 sb8ab 2329 risset 2536 cbvreuvw 2748 reuind 2985 difundi 3433 indifdir 3437 unab 3448 inab 3449 rabeq0 3498 abeq0 3499 inssdif0im 3536 snprc 3708 snssOLD 3770 unipr 3878 uni0b 3889 pwtr 4281 opm 4296 onintexmid 4639 elxp2 4711 opthprc 4744 xpiundir 4752 elvvv 4756 relun 4810 inopab 4828 difopab 4829 ralxpf 4842 rexxpf 4843 dmiun 4906 rniun 5112 cnvresima 5191 imaco 5207 fnopabg 5419 dff1o2 5549 idref 5848 imaiun 5852 opabex3d 6229 opabex3 6230 onntri35 7383 elixx3g 10058 elfz2 10172 elfzuzb 10176 divalgb 12351 1nprm 12551 issubg3 13643 cnfldui 14466 alsconv 16221 |
| Copyright terms: Public domain | W3C validator |