Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbequilem | Unicode version |
Description: Propositional logic lemma used in the sbequi 1819 proof. (Contributed by Jim Kingdon, 1-Feb-2018.) |
Ref | Expression |
---|---|
sbequilem.1 | |
sbequilem.2 |
Ref | Expression |
---|---|
sbequilem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequilem.1 | . . . . . . . . . 10 | |
2 | sbequilem.2 | . . . . . . . . . 10 | |
3 | 1, 2 | pm3.2i 270 | . . . . . . . . 9 |
4 | andi 808 | . . . . . . . . 9 | |
5 | 3, 4 | mpbi 144 | . . . . . . . 8 |
6 | andir 809 | . . . . . . . . 9 | |
7 | andir 809 | . . . . . . . . 9 | |
8 | 6, 7 | orbi12i 754 | . . . . . . . 8 |
9 | 5, 8 | mpbi 144 | . . . . . . 7 |
10 | pm3.43 592 | . . . . . . . . . 10 | |
11 | pm3.33 343 | . . . . . . . . . 10 | |
12 | 10, 11 | syl6 33 | . . . . . . . . 9 |
13 | 12 | orim2i 751 | . . . . . . . 8 |
14 | 13 | orim2i 751 | . . . . . . 7 |
15 | 9, 14 | ax-mp 5 | . . . . . 6 |
16 | simpr 109 | . . . . . . . 8 | |
17 | 6, 16 | sylbir 134 | . . . . . . 7 |
18 | 17 | orim1i 750 | . . . . . 6 |
19 | 15, 18 | ax-mp 5 | . . . . 5 |
20 | simpl 108 | . . . . . . 7 | |
21 | 20 | orim1i 750 | . . . . . 6 |
22 | 21 | orim2i 751 | . . . . 5 |
23 | 19, 22 | ax-mp 5 | . . . 4 |
24 | orass 757 | . . . 4 | |
25 | 23, 24 | mpbir 145 | . . 3 |
26 | orcom 718 | . . . 4 | |
27 | 26 | orbi1i 753 | . . 3 |
28 | 25, 27 | mpbi 144 | . 2 |
29 | orass 757 | . 2 | |
30 | 28, 29 | mpbi 144 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sbequi 1819 |
Copyright terms: Public domain | W3C validator |