| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sbequilem | Unicode version | ||
| Description: Propositional logic lemma used in the sbequi 1853 proof. (Contributed by Jim Kingdon, 1-Feb-2018.) | 
| Ref | Expression | 
|---|---|
| sbequilem.1 | 
 | 
| sbequilem.2 | 
 | 
| Ref | Expression | 
|---|---|
| sbequilem | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbequilem.1 | 
. . . . . . . . . 10
 | |
| 2 | sbequilem.2 | 
. . . . . . . . . 10
 | |
| 3 | 1, 2 | pm3.2i 272 | 
. . . . . . . . 9
 | 
| 4 | andi 819 | 
. . . . . . . . 9
 | |
| 5 | 3, 4 | mpbi 145 | 
. . . . . . . 8
 | 
| 6 | andir 820 | 
. . . . . . . . 9
 | |
| 7 | andir 820 | 
. . . . . . . . 9
 | |
| 8 | 6, 7 | orbi12i 765 | 
. . . . . . . 8
 | 
| 9 | 5, 8 | mpbi 145 | 
. . . . . . 7
 | 
| 10 | pm3.43 602 | 
. . . . . . . . . 10
 | |
| 11 | pm3.33 345 | 
. . . . . . . . . 10
 | |
| 12 | 10, 11 | syl6 33 | 
. . . . . . . . 9
 | 
| 13 | 12 | orim2i 762 | 
. . . . . . . 8
 | 
| 14 | 13 | orim2i 762 | 
. . . . . . 7
 | 
| 15 | 9, 14 | ax-mp 5 | 
. . . . . 6
 | 
| 16 | simpr 110 | 
. . . . . . . 8
 | |
| 17 | 6, 16 | sylbir 135 | 
. . . . . . 7
 | 
| 18 | 17 | orim1i 761 | 
. . . . . 6
 | 
| 19 | 15, 18 | ax-mp 5 | 
. . . . 5
 | 
| 20 | simpl 109 | 
. . . . . . 7
 | |
| 21 | 20 | orim1i 761 | 
. . . . . 6
 | 
| 22 | 21 | orim2i 762 | 
. . . . 5
 | 
| 23 | 19, 22 | ax-mp 5 | 
. . . 4
 | 
| 24 | orass 768 | 
. . . 4
 | |
| 25 | 23, 24 | mpbir 146 | 
. . 3
 | 
| 26 | orcom 729 | 
. . . 4
 | |
| 27 | 26 | orbi1i 764 | 
. . 3
 | 
| 28 | 25, 27 | mpbi 145 | 
. 2
 | 
| 29 | orass 768 | 
. 2
 | |
| 30 | 28, 29 | mpbi 145 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: sbequi 1853 | 
| Copyright terms: Public domain | W3C validator |