Proof of Theorem sbequilem
Step | Hyp | Ref
| Expression |
1 | | sbequilem.1 |
. . . . . . . . . 10
⊢ (𝜑 ∨ (𝜓 → (𝜒 → 𝜃))) |
2 | | sbequilem.2 |
. . . . . . . . . 10
⊢ (𝜏 ∨ (𝜓 → (𝜃 → 𝜂))) |
3 | 1, 2 | pm3.2i 270 |
. . . . . . . . 9
⊢ ((𝜑 ∨ (𝜓 → (𝜒 → 𝜃))) ∧ (𝜏 ∨ (𝜓 → (𝜃 → 𝜂)))) |
4 | | andi 808 |
. . . . . . . . 9
⊢ (((𝜑 ∨ (𝜓 → (𝜒 → 𝜃))) ∧ (𝜏 ∨ (𝜓 → (𝜃 → 𝜂)))) ↔ (((𝜑 ∨ (𝜓 → (𝜒 → 𝜃))) ∧ 𝜏) ∨ ((𝜑 ∨ (𝜓 → (𝜒 → 𝜃))) ∧ (𝜓 → (𝜃 → 𝜂))))) |
5 | 3, 4 | mpbi 144 |
. . . . . . . 8
⊢ (((𝜑 ∨ (𝜓 → (𝜒 → 𝜃))) ∧ 𝜏) ∨ ((𝜑 ∨ (𝜓 → (𝜒 → 𝜃))) ∧ (𝜓 → (𝜃 → 𝜂)))) |
6 | | andir 809 |
. . . . . . . . 9
⊢ (((𝜑 ∨ (𝜓 → (𝜒 → 𝜃))) ∧ 𝜏) ↔ ((𝜑 ∧ 𝜏) ∨ ((𝜓 → (𝜒 → 𝜃)) ∧ 𝜏))) |
7 | | andir 809 |
. . . . . . . . 9
⊢ (((𝜑 ∨ (𝜓 → (𝜒 → 𝜃))) ∧ (𝜓 → (𝜃 → 𝜂))) ↔ ((𝜑 ∧ (𝜓 → (𝜃 → 𝜂))) ∨ ((𝜓 → (𝜒 → 𝜃)) ∧ (𝜓 → (𝜃 → 𝜂))))) |
8 | 6, 7 | orbi12i 754 |
. . . . . . . 8
⊢ ((((𝜑 ∨ (𝜓 → (𝜒 → 𝜃))) ∧ 𝜏) ∨ ((𝜑 ∨ (𝜓 → (𝜒 → 𝜃))) ∧ (𝜓 → (𝜃 → 𝜂)))) ↔ (((𝜑 ∧ 𝜏) ∨ ((𝜓 → (𝜒 → 𝜃)) ∧ 𝜏)) ∨ ((𝜑 ∧ (𝜓 → (𝜃 → 𝜂))) ∨ ((𝜓 → (𝜒 → 𝜃)) ∧ (𝜓 → (𝜃 → 𝜂)))))) |
9 | 5, 8 | mpbi 144 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜏) ∨ ((𝜓 → (𝜒 → 𝜃)) ∧ 𝜏)) ∨ ((𝜑 ∧ (𝜓 → (𝜃 → 𝜂))) ∨ ((𝜓 → (𝜒 → 𝜃)) ∧ (𝜓 → (𝜃 → 𝜂))))) |
10 | | pm3.43 592 |
. . . . . . . . . 10
⊢ (((𝜓 → (𝜒 → 𝜃)) ∧ (𝜓 → (𝜃 → 𝜂))) → (𝜓 → ((𝜒 → 𝜃) ∧ (𝜃 → 𝜂)))) |
11 | | pm3.33 343 |
. . . . . . . . . 10
⊢ (((𝜒 → 𝜃) ∧ (𝜃 → 𝜂)) → (𝜒 → 𝜂)) |
12 | 10, 11 | syl6 33 |
. . . . . . . . 9
⊢ (((𝜓 → (𝜒 → 𝜃)) ∧ (𝜓 → (𝜃 → 𝜂))) → (𝜓 → (𝜒 → 𝜂))) |
13 | 12 | orim2i 751 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝜓 → (𝜃 → 𝜂))) ∨ ((𝜓 → (𝜒 → 𝜃)) ∧ (𝜓 → (𝜃 → 𝜂)))) → ((𝜑 ∧ (𝜓 → (𝜃 → 𝜂))) ∨ (𝜓 → (𝜒 → 𝜂)))) |
14 | 13 | orim2i 751 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝜏) ∨ ((𝜓 → (𝜒 → 𝜃)) ∧ 𝜏)) ∨ ((𝜑 ∧ (𝜓 → (𝜃 → 𝜂))) ∨ ((𝜓 → (𝜒 → 𝜃)) ∧ (𝜓 → (𝜃 → 𝜂))))) → (((𝜑 ∧ 𝜏) ∨ ((𝜓 → (𝜒 → 𝜃)) ∧ 𝜏)) ∨ ((𝜑 ∧ (𝜓 → (𝜃 → 𝜂))) ∨ (𝜓 → (𝜒 → 𝜂))))) |
15 | 9, 14 | ax-mp 5 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜏) ∨ ((𝜓 → (𝜒 → 𝜃)) ∧ 𝜏)) ∨ ((𝜑 ∧ (𝜓 → (𝜃 → 𝜂))) ∨ (𝜓 → (𝜒 → 𝜂)))) |
16 | | simpr 109 |
. . . . . . . 8
⊢ (((𝜑 ∨ (𝜓 → (𝜒 → 𝜃))) ∧ 𝜏) → 𝜏) |
17 | 6, 16 | sylbir 134 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜏) ∨ ((𝜓 → (𝜒 → 𝜃)) ∧ 𝜏)) → 𝜏) |
18 | 17 | orim1i 750 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝜏) ∨ ((𝜓 → (𝜒 → 𝜃)) ∧ 𝜏)) ∨ ((𝜑 ∧ (𝜓 → (𝜃 → 𝜂))) ∨ (𝜓 → (𝜒 → 𝜂)))) → (𝜏 ∨ ((𝜑 ∧ (𝜓 → (𝜃 → 𝜂))) ∨ (𝜓 → (𝜒 → 𝜂))))) |
19 | 15, 18 | ax-mp 5 |
. . . . 5
⊢ (𝜏 ∨ ((𝜑 ∧ (𝜓 → (𝜃 → 𝜂))) ∨ (𝜓 → (𝜒 → 𝜂)))) |
20 | | simpl 108 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝜓 → (𝜃 → 𝜂))) → 𝜑) |
21 | 20 | orim1i 750 |
. . . . . 6
⊢ (((𝜑 ∧ (𝜓 → (𝜃 → 𝜂))) ∨ (𝜓 → (𝜒 → 𝜂))) → (𝜑 ∨ (𝜓 → (𝜒 → 𝜂)))) |
22 | 21 | orim2i 751 |
. . . . 5
⊢ ((𝜏 ∨ ((𝜑 ∧ (𝜓 → (𝜃 → 𝜂))) ∨ (𝜓 → (𝜒 → 𝜂)))) → (𝜏 ∨ (𝜑 ∨ (𝜓 → (𝜒 → 𝜂))))) |
23 | 19, 22 | ax-mp 5 |
. . . 4
⊢ (𝜏 ∨ (𝜑 ∨ (𝜓 → (𝜒 → 𝜂)))) |
24 | | orass 757 |
. . . 4
⊢ (((𝜏 ∨ 𝜑) ∨ (𝜓 → (𝜒 → 𝜂))) ↔ (𝜏 ∨ (𝜑 ∨ (𝜓 → (𝜒 → 𝜂))))) |
25 | 23, 24 | mpbir 145 |
. . 3
⊢ ((𝜏 ∨ 𝜑) ∨ (𝜓 → (𝜒 → 𝜂))) |
26 | | orcom 718 |
. . . 4
⊢ ((𝜏 ∨ 𝜑) ↔ (𝜑 ∨ 𝜏)) |
27 | 26 | orbi1i 753 |
. . 3
⊢ (((𝜏 ∨ 𝜑) ∨ (𝜓 → (𝜒 → 𝜂))) ↔ ((𝜑 ∨ 𝜏) ∨ (𝜓 → (𝜒 → 𝜂)))) |
28 | 25, 27 | mpbi 144 |
. 2
⊢ ((𝜑 ∨ 𝜏) ∨ (𝜓 → (𝜒 → 𝜂))) |
29 | | orass 757 |
. 2
⊢ (((𝜑 ∨ 𝜏) ∨ (𝜓 → (𝜒 → 𝜂))) ↔ (𝜑 ∨ (𝜏 ∨ (𝜓 → (𝜒 → 𝜂))))) |
30 | 28, 29 | mpbi 144 |
1
⊢ (𝜑 ∨ (𝜏 ∨ (𝜓 → (𝜒 → 𝜂)))) |