ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbrbis Unicode version

Theorem sbrbis 1989
Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
sbrbis.1  |-  ( [ y  /  x ] ph 
<->  ps )
Assertion
Ref Expression
sbrbis  |-  ( [ y  /  x ]
( ph  <->  ch )  <->  ( ps  <->  [ y  /  x ] ch ) )

Proof of Theorem sbrbis
StepHypRef Expression
1 sbbi 1987 . 2  |-  ( [ y  /  x ]
( ph  <->  ch )  <->  ( [
y  /  x ] ph 
<->  [ y  /  x ] ch ) )
2 sbrbis.1 . . 3  |-  ( [ y  /  x ] ph 
<->  ps )
32bibi1i 228 . 2  |-  ( ( [ y  /  x ] ph  <->  [ y  /  x ] ch )  <->  ( ps  <->  [ y  /  x ] ch ) )
41, 3bitri 184 1  |-  ( [ y  /  x ]
( ph  <->  ch )  <->  ( ps  <->  [ y  /  x ] ch ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786
This theorem is referenced by:  sbrbif  1990  sbabel  2375
  Copyright terms: Public domain W3C validator