ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbrbif Unicode version

Theorem sbrbif 2013
Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
sbrbif.1  |-  ( ch 
->  A. x ch )
sbrbif.2  |-  ( [ y  /  x ] ph 
<->  ps )
Assertion
Ref Expression
sbrbif  |-  ( [ y  /  x ]
( ph  <->  ch )  <->  ( ps  <->  ch ) )

Proof of Theorem sbrbif
StepHypRef Expression
1 sbrbif.2 . . 3  |-  ( [ y  /  x ] ph 
<->  ps )
21sbrbis 2012 . 2  |-  ( [ y  /  x ]
( ph  <->  ch )  <->  ( ps  <->  [ y  /  x ] ch ) )
3 sbrbif.1 . . . 4  |-  ( ch 
->  A. x ch )
43sbh 1822 . . 3  |-  ( [ y  /  x ] ch 
<->  ch )
54bibi2i 227 . 2  |-  ( ( ps  <->  [ y  /  x ] ch )  <->  ( ps  <->  ch ) )
62, 5bitri 184 1  |-  ( [ y  /  x ]
( ph  <->  ch )  <->  ( ps  <->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1393   [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator