Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sblbis | Unicode version |
Description: Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
sblbis.1 |
Ref | Expression |
---|---|
sblbis |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbi 1952 | . 2 | |
2 | sblbis.1 | . . 3 | |
3 | 2 | bibi2i 226 | . 2 |
4 | 1, 3 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: sb8eu 2032 sb8euh 2042 sb8iota 5167 |
Copyright terms: Public domain | W3C validator |