| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbbi | Unicode version | ||
| Description: Equivalence inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 388 |
. . 3
| |
| 2 | 1 | sbbii 1788 |
. 2
|
| 3 | sbim 1981 |
. . . 4
| |
| 4 | sbim 1981 |
. . . 4
| |
| 5 | 3, 4 | anbi12i 460 |
. . 3
|
| 6 | sban 1983 |
. . 3
| |
| 7 | dfbi2 388 |
. . 3
| |
| 8 | 5, 6, 7 | 3bitr4i 212 |
. 2
|
| 9 | 2, 8 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 |
| This theorem is referenced by: sblbis 1988 sbrbis 1989 sbco 1996 sbcocom 1998 sb8eu 2067 sb8euh 2077 elsb1 2183 elsb2 2184 pm13.183 2911 sbcbig 3045 sb8iota 5239 |
| Copyright terms: Public domain | W3C validator |