ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbbi Unicode version

Theorem sbbi 2010
Description: Equivalence inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbbi  |-  ( [ y  /  x ]
( ph  <->  ps )  <->  ( [
y  /  x ] ph 
<->  [ y  /  x ] ps ) )

Proof of Theorem sbbi
StepHypRef Expression
1 dfbi2 388 . . 3  |-  ( (
ph 
<->  ps )  <->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )
21sbbii 1811 . 2  |-  ( [ y  /  x ]
( ph  <->  ps )  <->  [ y  /  x ] ( (
ph  ->  ps )  /\  ( ps  ->  ph )
) )
3 sbim 2004 . . . 4  |-  ( [ y  /  x ]
( ph  ->  ps )  <->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps )
)
4 sbim 2004 . . . 4  |-  ( [ y  /  x ]
( ps  ->  ph )  <->  ( [ y  /  x ] ps  ->  [ y  /  x ] ph ) )
53, 4anbi12i 460 . . 3  |-  ( ( [ y  /  x ] ( ph  ->  ps )  /\  [ y  /  x ] ( ps  ->  ph ) )  <-> 
( ( [ y  /  x ] ph  ->  [ y  /  x ] ps )  /\  ( [ y  /  x ] ps  ->  [ y  /  x ] ph ) ) )
6 sban 2006 . . 3  |-  ( [ y  /  x ]
( ( ph  ->  ps )  /\  ( ps 
->  ph ) )  <->  ( [
y  /  x ]
( ph  ->  ps )  /\  [ y  /  x ] ( ps  ->  ph ) ) )
7 dfbi2 388 . . 3  |-  ( ( [ y  /  x ] ph  <->  [ y  /  x ] ps )  <->  ( ( [ y  /  x ] ph  ->  [ y  /  x ] ps )  /\  ( [ y  /  x ] ps  ->  [ y  /  x ] ph ) ) )
85, 6, 73bitr4i 212 . 2  |-  ( [ y  /  x ]
( ( ph  ->  ps )  /\  ( ps 
->  ph ) )  <->  ( [
y  /  x ] ph 
<->  [ y  /  x ] ps ) )
92, 8bitri 184 1  |-  ( [ y  /  x ]
( ph  <->  ps )  <->  ( [
y  /  x ] ph 
<->  [ y  /  x ] ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809
This theorem is referenced by:  sblbis  2011  sbrbis  2012  sbco  2019  sbcocom  2021  sb8eu  2090  sb8euh  2100  elsb1  2207  elsb2  2208  pm13.183  2941  sbcbig  3075  sb8iota  5286
  Copyright terms: Public domain W3C validator