| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbbi | Unicode version | ||
| Description: Equivalence inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 388 |
. . 3
| |
| 2 | 1 | sbbii 1779 |
. 2
|
| 3 | sbim 1972 |
. . . 4
| |
| 4 | sbim 1972 |
. . . 4
| |
| 5 | 3, 4 | anbi12i 460 |
. . 3
|
| 6 | sban 1974 |
. . 3
| |
| 7 | dfbi2 388 |
. . 3
| |
| 8 | 5, 6, 7 | 3bitr4i 212 |
. 2
|
| 9 | 2, 8 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 |
| This theorem is referenced by: sblbis 1979 sbrbis 1980 sbco 1987 sbcocom 1989 sb8eu 2058 sb8euh 2068 elsb1 2174 elsb2 2175 pm13.183 2902 sbcbig 3036 sb8iota 5227 |
| Copyright terms: Public domain | W3C validator |