ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcncf Unicode version

Theorem mulcncf 12760
Description: The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
mulcncf.1  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )
mulcncf.2  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X -cn-> CC ) )
Assertion
Ref Expression
mulcncf  |-  ( ph  ->  ( x  e.  X  |->  ( A  x.  B
) )  e.  ( X -cn-> CC ) )
Distinct variable groups:    x, X    ph, x
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem mulcncf
Dummy variables  a  b  d  e  f  g  s  t  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcncf.1 . . . . . . 7  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )
2 cncff 12733 . . . . . . 7  |-  ( ( x  e.  X  |->  A )  e.  ( X
-cn-> CC )  ->  (
x  e.  X  |->  A ) : X --> CC )
31, 2syl 14 . . . . . 6  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> CC )
4 eqid 2139 . . . . . . 7  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
54fmpt 5570 . . . . . 6  |-  ( A. x  e.  X  A  e.  CC  <->  ( x  e.  X  |->  A ) : X --> CC )
63, 5sylibr 133 . . . . 5  |-  ( ph  ->  A. x  e.  X  A  e.  CC )
76r19.21bi 2520 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
8 mulcncf.2 . . . . . . 7  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X -cn-> CC ) )
9 cncff 12733 . . . . . . 7  |-  ( ( x  e.  X  |->  B )  e.  ( X
-cn-> CC )  ->  (
x  e.  X  |->  B ) : X --> CC )
108, 9syl 14 . . . . . 6  |-  ( ph  ->  ( x  e.  X  |->  B ) : X --> CC )
11 eqid 2139 . . . . . . 7  |-  ( x  e.  X  |->  B )  =  ( x  e.  X  |->  B )
1211fmpt 5570 . . . . . 6  |-  ( A. x  e.  X  B  e.  CC  <->  ( x  e.  X  |->  B ) : X --> CC )
1310, 12sylibr 133 . . . . 5  |-  ( ph  ->  A. x  e.  X  B  e.  CC )
1413r19.21bi 2520 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  CC )
157, 14mulcld 7786 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  ( A  x.  B )  e.  CC )
1615fmpttd 5575 . 2  |-  ( ph  ->  ( x  e.  X  |->  ( A  x.  B
) ) : X --> CC )
17 simpr 109 . . . . . 6  |-  ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  ->  e  e.  RR+ )
18 simplr 519 . . . . . . 7  |-  ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  ->  v  e.  X )
196ad2antrr 479 . . . . . . 7  |-  ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  ->  A. x  e.  X  A  e.  CC )
20 rspcsbela 3059 . . . . . . 7  |-  ( ( v  e.  X  /\  A. x  e.  X  A  e.  CC )  ->  [_ v  /  x ]_ A  e.  CC )
2118, 19, 20syl2anc 408 . . . . . 6  |-  ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  ->  [_ v  /  x ]_ A  e.  CC )
2213ad2antrr 479 . . . . . . 7  |-  ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  ->  A. x  e.  X  B  e.  CC )
23 rspcsbela 3059 . . . . . . 7  |-  ( ( v  e.  X  /\  A. x  e.  X  B  e.  CC )  ->  [_ v  /  x ]_ B  e.  CC )
2418, 22, 23syl2anc 408 . . . . . 6  |-  ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  ->  [_ v  /  x ]_ B  e.  CC )
25 mulcn2 11081 . . . . . 6  |-  ( ( e  e.  RR+  /\  [_ v  /  x ]_ A  e.  CC  /\  [_ v  /  x ]_ B  e.  CC )  ->  E. f  e.  RR+  E. g  e.  RR+  A. a  e.  CC  A. b  e.  CC  (
( ( abs `  (
a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  <  g )  -> 
( abs `  (
( a  x.  b
)  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e ) )
2617, 21, 24, 25syl3anc 1216 . . . . 5  |-  ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  ->  E. f  e.  RR+  E. g  e.  RR+  A. a  e.  CC  A. b  e.  CC  (
( ( abs `  (
a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  <  g )  -> 
( abs `  (
( a  x.  b
)  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e ) )
271ad3antrrr 483 . . . . . . . 8  |-  ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )
28 simpr 109 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  X )  ->  v  e.  X )
2928ad2antrr 479 . . . . . . . 8  |-  ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  ->  v  e.  X )
30 simprl 520 . . . . . . . 8  |-  ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  ->  f  e.  RR+ )
31 cncfi 12734 . . . . . . . 8  |-  ( ( ( x  e.  X  |->  A )  e.  ( X -cn-> CC )  /\  v  e.  X  /\  f  e.  RR+ )  ->  E. s  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  s  ->  ( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) )
3227, 29, 30, 31syl3anc 1216 . . . . . . 7  |-  ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  ->  E. s  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  s  ->  ( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) )
338ad3antrrr 483 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  ->  ( x  e.  X  |->  B )  e.  ( X -cn-> CC ) )
34 simprr 521 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  ->  g  e.  RR+ )
35 cncfi 12734 . . . . . . . . . 10  |-  ( ( ( x  e.  X  |->  B )  e.  ( X -cn-> CC )  /\  v  e.  X  /\  g  e.  RR+ )  ->  E. t  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) )
3633, 29, 34, 35syl3anc 1216 . . . . . . . . 9  |-  ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  ->  E. t  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) )
3736adantr 274 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ ) )  /\  (
s  e.  RR+  /\  A. u  e.  X  (
( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  ->  E. t  e.  RR+  A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  t  -> 
( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) )
3827ad3antrrr 483 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  (
x  e.  X  |->  A )  e.  ( X
-cn-> CC ) )
3933ad3antrrr 483 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  (
x  e.  X  |->  B )  e.  ( X
-cn-> CC ) )
4029ad3antrrr 483 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  v  e.  X )
41 simp-5r 533 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  e  e.  RR+ )
4230ad3antrrr 483 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  f  e.  RR+ )
4334ad3antrrr 483 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  g  e.  RR+ )
44 simprl 520 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ ) )  /\  (
s  e.  RR+  /\  A. u  e.  X  (
( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  ->  s  e.  RR+ )
4544ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  s  e.  RR+ )
46 simplrl 524 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  t  e.  RR+ )
47 simprr 521 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ ) )  /\  (
s  e.  RR+  /\  A. u  e.  X  (
( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  ->  A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) )
4847ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
s  ->  ( abs `  ( ( ( x  e.  X  |->  A ) `
 u )  -  ( ( x  e.  X  |->  A ) `  v ) ) )  <  f ) )
49 simplrr 525 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
t  ->  ( abs `  ( ( ( x  e.  X  |->  B ) `
 u )  -  ( ( x  e.  X  |->  B ) `  v ) ) )  <  g ) )
50 nfv 1508 . . . . . . . . . . . . . 14  |-  F/ u
( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ ) )
51 nfv 1508 . . . . . . . . . . . . . . 15  |-  F/ u  s  e.  RR+
52 nfra1 2466 . . . . . . . . . . . . . . 15  |-  F/ u A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f )
5351, 52nfan 1544 . . . . . . . . . . . . . 14  |-  F/ u
( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) )
5450, 53nfan 1544 . . . . . . . . . . . . 13  |-  F/ u
( ( ( (
ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )
55 nfv 1508 . . . . . . . . . . . . . 14  |-  F/ u  t  e.  RR+
56 nfra1 2466 . . . . . . . . . . . . . 14  |-  F/ u A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  t  -> 
( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g )
5755, 56nfan 1544 . . . . . . . . . . . . 13  |-  F/ u
( t  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  t  -> 
( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) )
5854, 57nfan 1544 . . . . . . . . . . . 12  |-  F/ u
( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )
59 nfv 1508 . . . . . . . . . . . 12  |-  F/ u A. a  e.  CC  A. b  e.  CC  (
( ( abs `  (
a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  <  g )  -> 
( abs `  (
( a  x.  b
)  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e )
6058, 59nfan 1544 . . . . . . . . . . 11  |-  F/ u
( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  /\  ( s  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
s  ->  ( abs `  ( ( ( x  e.  X  |->  A ) `
 u )  -  ( ( x  e.  X  |->  A ) `  v ) ) )  <  f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
t  ->  ( abs `  ( ( ( x  e.  X  |->  B ) `
 u )  -  ( ( x  e.  X  |->  B ) `  v ) ) )  <  g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )
61 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  /\  ( s  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
s  ->  ( abs `  ( ( ( x  e.  X  |->  A ) `
 u )  -  ( ( x  e.  X  |->  A ) `  v ) ) )  <  f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
t  ->  ( abs `  ( ( ( x  e.  X  |->  B ) `
 u )  -  ( ( x  e.  X  |->  B ) `  v ) ) )  <  g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  /\  u  e.  X )  ->  u  e.  X )
6219ad5antr 487 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  /\  ( s  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
s  ->  ( abs `  ( ( ( x  e.  X  |->  A ) `
 u )  -  ( ( x  e.  X  |->  A ) `  v ) ) )  <  f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
t  ->  ( abs `  ( ( ( x  e.  X  |->  B ) `
 u )  -  ( ( x  e.  X  |->  B ) `  v ) ) )  <  g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  /\  u  e.  X )  ->  A. x  e.  X  A  e.  CC )
63 rspcsbela 3059 . . . . . . . . . . . . . 14  |-  ( ( u  e.  X  /\  A. x  e.  X  A  e.  CC )  ->  [_ u  /  x ]_ A  e.  CC )
6461, 62, 63syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  /\  ( s  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
s  ->  ( abs `  ( ( ( x  e.  X  |->  A ) `
 u )  -  ( ( x  e.  X  |->  A ) `  v ) ) )  <  f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
t  ->  ( abs `  ( ( ( x  e.  X  |->  B ) `
 u )  -  ( ( x  e.  X  |->  B ) `  v ) ) )  <  g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  /\  u  e.  X )  ->  [_ u  /  x ]_ A  e.  CC )
6522ad5antr 487 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  /\  ( s  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
s  ->  ( abs `  ( ( ( x  e.  X  |->  A ) `
 u )  -  ( ( x  e.  X  |->  A ) `  v ) ) )  <  f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
t  ->  ( abs `  ( ( ( x  e.  X  |->  B ) `
 u )  -  ( ( x  e.  X  |->  B ) `  v ) ) )  <  g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  /\  u  e.  X )  ->  A. x  e.  X  B  e.  CC )
66 rspcsbela 3059 . . . . . . . . . . . . . 14  |-  ( ( u  e.  X  /\  A. x  e.  X  B  e.  CC )  ->  [_ u  /  x ]_ B  e.  CC )
6761, 65, 66syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  /\  ( s  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
s  ->  ( abs `  ( ( ( x  e.  X  |->  A ) `
 u )  -  ( ( x  e.  X  |->  A ) `  v ) ) )  <  f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
t  ->  ( abs `  ( ( ( x  e.  X  |->  B ) `
 u )  -  ( ( x  e.  X  |->  B ) `  v ) ) )  <  g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  /\  u  e.  X )  ->  [_ u  /  x ]_ B  e.  CC )
68 simplr 519 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  /\  ( s  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
s  ->  ( abs `  ( ( ( x  e.  X  |->  A ) `
 u )  -  ( ( x  e.  X  |->  A ) `  v ) ) )  <  f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
t  ->  ( abs `  ( ( ( x  e.  X  |->  B ) `
 u )  -  ( ( x  e.  X  |->  B ) `  v ) ) )  <  g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  /\  u  e.  X )  ->  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )
69 fvoveq1 5797 . . . . . . . . . . . . . . . . 17  |-  ( a  =  [_ u  /  x ]_ A  ->  ( abs `  ( a  -  [_ v  /  x ]_ A ) )  =  ( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A ) ) )
7069breq1d 3939 . . . . . . . . . . . . . . . 16  |-  ( a  =  [_ u  /  x ]_ A  ->  (
( abs `  (
a  -  [_ v  /  x ]_ A ) )  <  f  <->  ( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A
) )  <  f
) )
7170anbi1d 460 . . . . . . . . . . . . . . 15  |-  ( a  =  [_ u  /  x ]_ A  ->  (
( ( abs `  (
a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  <  g )  <->  ( ( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A ) )  < 
f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B
) )  <  g
) ) )
72 oveq1 5781 . . . . . . . . . . . . . . . . 17  |-  ( a  =  [_ u  /  x ]_ A  ->  (
a  x.  b )  =  ( [_ u  /  x ]_ A  x.  b ) )
7372fvoveq1d 5796 . . . . . . . . . . . . . . . 16  |-  ( a  =  [_ u  /  x ]_ A  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  =  ( abs `  ( (
[_ u  /  x ]_ A  x.  b
)  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) ) )
7473breq1d 3939 . . . . . . . . . . . . . . 15  |-  ( a  =  [_ u  /  x ]_ A  ->  (
( abs `  (
( a  x.  b
)  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e  <->  ( abs `  ( ( [_ u  /  x ]_ A  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )
7571, 74imbi12d 233 . . . . . . . . . . . . . 14  |-  ( a  =  [_ u  /  x ]_ A  ->  (
( ( ( abs `  ( a  -  [_ v  /  x ]_ A
) )  <  f  /\  ( abs `  (
b  -  [_ v  /  x ]_ B ) )  <  g )  ->  ( abs `  (
( a  x.  b
)  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e )  <->  ( (
( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  <  g )  -> 
( abs `  (
( [_ u  /  x ]_ A  x.  b
)  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e ) ) )
76 fvoveq1 5797 . . . . . . . . . . . . . . . . 17  |-  ( b  =  [_ u  /  x ]_ B  ->  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  =  ( abs `  ( [_ u  /  x ]_ B  -  [_ v  /  x ]_ B ) ) )
7776breq1d 3939 . . . . . . . . . . . . . . . 16  |-  ( b  =  [_ u  /  x ]_ B  ->  (
( abs `  (
b  -  [_ v  /  x ]_ B ) )  <  g  <->  ( abs `  ( [_ u  /  x ]_ B  -  [_ v  /  x ]_ B
) )  <  g
) )
7877anbi2d 459 . . . . . . . . . . . . . . 15  |-  ( b  =  [_ u  /  x ]_ B  ->  (
( ( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  <  g )  <->  ( ( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A ) )  < 
f  /\  ( abs `  ( [_ u  /  x ]_ B  -  [_ v  /  x ]_ B
) )  <  g
) ) )
79 oveq2 5782 . . . . . . . . . . . . . . . . 17  |-  ( b  =  [_ u  /  x ]_ B  ->  ( [_ u  /  x ]_ A  x.  b
)  =  ( [_ u  /  x ]_ A  x.  [_ u  /  x ]_ B ) )
8079fvoveq1d 5796 . . . . . . . . . . . . . . . 16  |-  ( b  =  [_ u  /  x ]_ B  ->  ( abs `  ( ( [_ u  /  x ]_ A  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  =  ( abs `  ( (
[_ u  /  x ]_ A  x.  [_ u  /  x ]_ B )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) ) )
8180breq1d 3939 . . . . . . . . . . . . . . 15  |-  ( b  =  [_ u  /  x ]_ B  ->  (
( abs `  (
( [_ u  /  x ]_ A  x.  b
)  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e  <->  ( abs `  ( ( [_ u  /  x ]_ A  x.  [_ u  /  x ]_ B )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )
8278, 81imbi12d 233 . . . . . . . . . . . . . 14  |-  ( b  =  [_ u  /  x ]_ B  ->  (
( ( ( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A
) )  <  f  /\  ( abs `  (
b  -  [_ v  /  x ]_ B ) )  <  g )  ->  ( abs `  (
( [_ u  /  x ]_ A  x.  b
)  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e )  <->  ( (
( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( [_ u  /  x ]_ B  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( [_ u  /  x ]_ A  x.  [_ u  /  x ]_ B )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) ) )
8375, 82rspc2va 2803 . . . . . . . . . . . . 13  |-  ( ( ( [_ u  /  x ]_ A  e.  CC  /\ 
[_ u  /  x ]_ B  e.  CC )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  (
( ( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( [_ u  /  x ]_ B  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( [_ u  /  x ]_ A  x.  [_ u  /  x ]_ B )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )
8464, 67, 68, 83syl21anc 1215 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  /\  ( s  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
s  ->  ( abs `  ( ( ( x  e.  X  |->  A ) `
 u )  -  ( ( x  e.  X  |->  A ) `  v ) ) )  <  f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
t  ->  ( abs `  ( ( ( x  e.  X  |->  B ) `
 u )  -  ( ( x  e.  X  |->  B ) `  v ) ) )  <  g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  /\  u  e.  X )  ->  (
( ( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( [_ u  /  x ]_ B  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( [_ u  /  x ]_ A  x.  [_ u  /  x ]_ B )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )
8584ex 114 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  (
u  e.  X  -> 
( ( ( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A
) )  <  f  /\  ( abs `  ( [_ u  /  x ]_ B  -  [_ v  /  x ]_ B ) )  <  g )  ->  ( abs `  (
( [_ u  /  x ]_ A  x.  [_ u  /  x ]_ B )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e ) ) )
8660, 85ralrimi 2503 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  A. u  e.  X  ( (
( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( [_ u  /  x ]_ B  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( [_ u  /  x ]_ A  x.  [_ u  /  x ]_ B )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )
8738, 39, 40, 41, 42, 43, 45, 46, 48, 49, 86mulcncflem 12759 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  E. d  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  d  ->  ( abs `  (
( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  (
( x  e.  X  |->  ( A  x.  B
) ) `  v
) ) )  < 
e ) )
8887ex 114 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  ->  ( A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
)  ->  E. d  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  d  ->  ( abs `  (
( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  (
( x  e.  X  |->  ( A  x.  B
) ) `  v
) ) )  < 
e ) ) )
8937, 88rexlimddv 2554 . . . . . . 7  |-  ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ ) )  /\  (
s  e.  RR+  /\  A. u  e.  X  (
( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  ->  ( A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
)  ->  E. d  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  d  ->  ( abs `  (
( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  (
( x  e.  X  |->  ( A  x.  B
) ) `  v
) ) )  < 
e ) ) )
9032, 89rexlimddv 2554 . . . . . 6  |-  ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  ->  ( A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
)  ->  E. d  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  d  ->  ( abs `  (
( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  (
( x  e.  X  |->  ( A  x.  B
) ) `  v
) ) )  < 
e ) ) )
9190rexlimdvva 2557 . . . . 5  |-  ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  ->  ( E. f  e.  RR+  E. g  e.  RR+  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
)  ->  E. d  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  d  ->  ( abs `  (
( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  (
( x  e.  X  |->  ( A  x.  B
) ) `  v
) ) )  < 
e ) ) )
9226, 91mpd 13 . . . 4  |-  ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  d  ->  ( abs `  (
( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  (
( x  e.  X  |->  ( A  x.  B
) ) `  v
) ) )  < 
e ) )
9392ralrimiva 2505 . . 3  |-  ( (
ph  /\  v  e.  X )  ->  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  d  -> 
( abs `  (
( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  (
( x  e.  X  |->  ( A  x.  B
) ) `  v
) ) )  < 
e ) )
9493ralrimiva 2505 . 2  |-  ( ph  ->  A. v  e.  X  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  d  ->  ( abs `  (
( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  (
( x  e.  X  |->  ( A  x.  B
) ) `  v
) ) )  < 
e ) )
95 cncfrss 12731 . . . 4  |-  ( ( x  e.  X  |->  A )  e.  ( X
-cn-> CC )  ->  X  C_  CC )
961, 95syl 14 . . 3  |-  ( ph  ->  X  C_  CC )
97 ssidd 3118 . . 3  |-  ( ph  ->  CC  C_  CC )
98 elcncf2 12730 . . 3  |-  ( ( X  C_  CC  /\  CC  C_  CC )  ->  (
( x  e.  X  |->  ( A  x.  B
) )  e.  ( X -cn-> CC )  <->  ( (
x  e.  X  |->  ( A  x.  B ) ) : X --> CC  /\  A. v  e.  X  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  d  ->  ( abs `  (
( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  (
( x  e.  X  |->  ( A  x.  B
) ) `  v
) ) )  < 
e ) ) ) )
9996, 97, 98syl2anc 408 . 2  |-  ( ph  ->  ( ( x  e.  X  |->  ( A  x.  B ) )  e.  ( X -cn-> CC )  <-> 
( ( x  e.  X  |->  ( A  x.  B ) ) : X --> CC  /\  A. v  e.  X  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  d  ->  ( abs `  (
( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  (
( x  e.  X  |->  ( A  x.  B
) ) `  v
) ) )  < 
e ) ) ) )
10016, 94, 99mpbir2and 928 1  |-  ( ph  ->  ( x  e.  X  |->  ( A  x.  B
) )  e.  ( X -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   [_csb 3003    C_ wss 3071   class class class wbr 3929    |-> cmpt 3989   -->wf 5119   ` cfv 5123  (class class class)co 5774   CCcc 7618    x. cmul 7625    < clt 7800    - cmin 7933   RR+crp 9441   abscabs 10769   -cn->ccncf 12726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-cncf 12727
This theorem is referenced by:  expcncf  12761
  Copyright terms: Public domain W3C validator