ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcncf Unicode version

Theorem mulcncf 15022
Description: The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
mulcncf.1  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )
mulcncf.2  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X -cn-> CC ) )
Assertion
Ref Expression
mulcncf  |-  ( ph  ->  ( x  e.  X  |->  ( A  x.  B
) )  e.  ( X -cn-> CC ) )
Distinct variable groups:    x, X    ph, x
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem mulcncf
Dummy variables  a  b  d  e  f  g  s  t  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcncf.1 . . . . . . 7  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )
2 cncff 14991 . . . . . . 7  |-  ( ( x  e.  X  |->  A )  e.  ( X
-cn-> CC )  ->  (
x  e.  X  |->  A ) : X --> CC )
31, 2syl 14 . . . . . 6  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> CC )
4 eqid 2204 . . . . . . 7  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
54fmpt 5729 . . . . . 6  |-  ( A. x  e.  X  A  e.  CC  <->  ( x  e.  X  |->  A ) : X --> CC )
63, 5sylibr 134 . . . . 5  |-  ( ph  ->  A. x  e.  X  A  e.  CC )
76r19.21bi 2593 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
8 mulcncf.2 . . . . . . 7  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X -cn-> CC ) )
9 cncff 14991 . . . . . . 7  |-  ( ( x  e.  X  |->  B )  e.  ( X
-cn-> CC )  ->  (
x  e.  X  |->  B ) : X --> CC )
108, 9syl 14 . . . . . 6  |-  ( ph  ->  ( x  e.  X  |->  B ) : X --> CC )
11 eqid 2204 . . . . . . 7  |-  ( x  e.  X  |->  B )  =  ( x  e.  X  |->  B )
1211fmpt 5729 . . . . . 6  |-  ( A. x  e.  X  B  e.  CC  <->  ( x  e.  X  |->  B ) : X --> CC )
1310, 12sylibr 134 . . . . 5  |-  ( ph  ->  A. x  e.  X  B  e.  CC )
1413r19.21bi 2593 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  CC )
157, 14mulcld 8092 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  ( A  x.  B )  e.  CC )
1615fmpttd 5734 . 2  |-  ( ph  ->  ( x  e.  X  |->  ( A  x.  B
) ) : X --> CC )
17 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  ->  e  e.  RR+ )
18 simplr 528 . . . . . . 7  |-  ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  ->  v  e.  X )
196ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  ->  A. x  e.  X  A  e.  CC )
20 rspcsbela 3152 . . . . . . 7  |-  ( ( v  e.  X  /\  A. x  e.  X  A  e.  CC )  ->  [_ v  /  x ]_ A  e.  CC )
2118, 19, 20syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  ->  [_ v  /  x ]_ A  e.  CC )
2213ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  ->  A. x  e.  X  B  e.  CC )
23 rspcsbela 3152 . . . . . . 7  |-  ( ( v  e.  X  /\  A. x  e.  X  B  e.  CC )  ->  [_ v  /  x ]_ B  e.  CC )
2418, 22, 23syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  ->  [_ v  /  x ]_ B  e.  CC )
25 mulcn2 11565 . . . . . 6  |-  ( ( e  e.  RR+  /\  [_ v  /  x ]_ A  e.  CC  /\  [_ v  /  x ]_ B  e.  CC )  ->  E. f  e.  RR+  E. g  e.  RR+  A. a  e.  CC  A. b  e.  CC  (
( ( abs `  (
a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  <  g )  -> 
( abs `  (
( a  x.  b
)  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e ) )
2617, 21, 24, 25syl3anc 1249 . . . . 5  |-  ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  ->  E. f  e.  RR+  E. g  e.  RR+  A. a  e.  CC  A. b  e.  CC  (
( ( abs `  (
a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  <  g )  -> 
( abs `  (
( a  x.  b
)  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e ) )
271ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )
28 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  X )  ->  v  e.  X )
2928ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  ->  v  e.  X )
30 simprl 529 . . . . . . . 8  |-  ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  ->  f  e.  RR+ )
31 cncfi 14992 . . . . . . . 8  |-  ( ( ( x  e.  X  |->  A )  e.  ( X -cn-> CC )  /\  v  e.  X  /\  f  e.  RR+ )  ->  E. s  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  s  ->  ( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) )
3227, 29, 30, 31syl3anc 1249 . . . . . . 7  |-  ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  ->  E. s  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  s  ->  ( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) )
338ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  ->  ( x  e.  X  |->  B )  e.  ( X -cn-> CC ) )
34 simprr 531 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  ->  g  e.  RR+ )
35 cncfi 14992 . . . . . . . . . 10  |-  ( ( ( x  e.  X  |->  B )  e.  ( X -cn-> CC )  /\  v  e.  X  /\  g  e.  RR+ )  ->  E. t  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) )
3633, 29, 34, 35syl3anc 1249 . . . . . . . . 9  |-  ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  ->  E. t  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) )
3736adantr 276 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ ) )  /\  (
s  e.  RR+  /\  A. u  e.  X  (
( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  ->  E. t  e.  RR+  A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  t  -> 
( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) )
3827ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  (
x  e.  X  |->  A )  e.  ( X
-cn-> CC ) )
3933ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  (
x  e.  X  |->  B )  e.  ( X
-cn-> CC ) )
4029ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  v  e.  X )
41 simp-5r 544 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  e  e.  RR+ )
4230ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  f  e.  RR+ )
4334ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  g  e.  RR+ )
44 simprl 529 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ ) )  /\  (
s  e.  RR+  /\  A. u  e.  X  (
( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  ->  s  e.  RR+ )
4544ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  s  e.  RR+ )
46 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  t  e.  RR+ )
47 simprr 531 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ ) )  /\  (
s  e.  RR+  /\  A. u  e.  X  (
( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  ->  A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) )
4847ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
s  ->  ( abs `  ( ( ( x  e.  X  |->  A ) `
 u )  -  ( ( x  e.  X  |->  A ) `  v ) ) )  <  f ) )
49 simplrr 536 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
t  ->  ( abs `  ( ( ( x  e.  X  |->  B ) `
 u )  -  ( ( x  e.  X  |->  B ) `  v ) ) )  <  g ) )
50 nfv 1550 . . . . . . . . . . . . . 14  |-  F/ u
( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ ) )
51 nfv 1550 . . . . . . . . . . . . . . 15  |-  F/ u  s  e.  RR+
52 nfra1 2536 . . . . . . . . . . . . . . 15  |-  F/ u A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f )
5351, 52nfan 1587 . . . . . . . . . . . . . 14  |-  F/ u
( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) )
5450, 53nfan 1587 . . . . . . . . . . . . 13  |-  F/ u
( ( ( (
ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )
55 nfv 1550 . . . . . . . . . . . . . 14  |-  F/ u  t  e.  RR+
56 nfra1 2536 . . . . . . . . . . . . . 14  |-  F/ u A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  t  -> 
( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g )
5755, 56nfan 1587 . . . . . . . . . . . . 13  |-  F/ u
( t  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  t  -> 
( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) )
5854, 57nfan 1587 . . . . . . . . . . . 12  |-  F/ u
( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )
59 nfv 1550 . . . . . . . . . . . 12  |-  F/ u A. a  e.  CC  A. b  e.  CC  (
( ( abs `  (
a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  <  g )  -> 
( abs `  (
( a  x.  b
)  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e )
6058, 59nfan 1587 . . . . . . . . . . 11  |-  F/ u
( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  /\  ( s  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
s  ->  ( abs `  ( ( ( x  e.  X  |->  A ) `
 u )  -  ( ( x  e.  X  |->  A ) `  v ) ) )  <  f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
t  ->  ( abs `  ( ( ( x  e.  X  |->  B ) `
 u )  -  ( ( x  e.  X  |->  B ) `  v ) ) )  <  g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )
61 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  /\  ( s  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
s  ->  ( abs `  ( ( ( x  e.  X  |->  A ) `
 u )  -  ( ( x  e.  X  |->  A ) `  v ) ) )  <  f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
t  ->  ( abs `  ( ( ( x  e.  X  |->  B ) `
 u )  -  ( ( x  e.  X  |->  B ) `  v ) ) )  <  g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  /\  u  e.  X )  ->  u  e.  X )
6219ad5antr 496 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  /\  ( s  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
s  ->  ( abs `  ( ( ( x  e.  X  |->  A ) `
 u )  -  ( ( x  e.  X  |->  A ) `  v ) ) )  <  f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
t  ->  ( abs `  ( ( ( x  e.  X  |->  B ) `
 u )  -  ( ( x  e.  X  |->  B ) `  v ) ) )  <  g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  /\  u  e.  X )  ->  A. x  e.  X  A  e.  CC )
63 rspcsbela 3152 . . . . . . . . . . . . . 14  |-  ( ( u  e.  X  /\  A. x  e.  X  A  e.  CC )  ->  [_ u  /  x ]_ A  e.  CC )
6461, 62, 63syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  /\  ( s  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
s  ->  ( abs `  ( ( ( x  e.  X  |->  A ) `
 u )  -  ( ( x  e.  X  |->  A ) `  v ) ) )  <  f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
t  ->  ( abs `  ( ( ( x  e.  X  |->  B ) `
 u )  -  ( ( x  e.  X  |->  B ) `  v ) ) )  <  g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  /\  u  e.  X )  ->  [_ u  /  x ]_ A  e.  CC )
6522ad5antr 496 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  /\  ( s  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
s  ->  ( abs `  ( ( ( x  e.  X  |->  A ) `
 u )  -  ( ( x  e.  X  |->  A ) `  v ) ) )  <  f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
t  ->  ( abs `  ( ( ( x  e.  X  |->  B ) `
 u )  -  ( ( x  e.  X  |->  B ) `  v ) ) )  <  g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  /\  u  e.  X )  ->  A. x  e.  X  B  e.  CC )
66 rspcsbela 3152 . . . . . . . . . . . . . 14  |-  ( ( u  e.  X  /\  A. x  e.  X  B  e.  CC )  ->  [_ u  /  x ]_ B  e.  CC )
6761, 65, 66syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  /\  ( s  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
s  ->  ( abs `  ( ( ( x  e.  X  |->  A ) `
 u )  -  ( ( x  e.  X  |->  A ) `  v ) ) )  <  f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
t  ->  ( abs `  ( ( ( x  e.  X  |->  B ) `
 u )  -  ( ( x  e.  X  |->  B ) `  v ) ) )  <  g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  /\  u  e.  X )  ->  [_ u  /  x ]_ B  e.  CC )
68 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  /\  ( s  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
s  ->  ( abs `  ( ( ( x  e.  X  |->  A ) `
 u )  -  ( ( x  e.  X  |->  A ) `  v ) ) )  <  f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
t  ->  ( abs `  ( ( ( x  e.  X  |->  B ) `
 u )  -  ( ( x  e.  X  |->  B ) `  v ) ) )  <  g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  /\  u  e.  X )  ->  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )
69 fvoveq1 5966 . . . . . . . . . . . . . . . . 17  |-  ( a  =  [_ u  /  x ]_ A  ->  ( abs `  ( a  -  [_ v  /  x ]_ A ) )  =  ( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A ) ) )
7069breq1d 4053 . . . . . . . . . . . . . . . 16  |-  ( a  =  [_ u  /  x ]_ A  ->  (
( abs `  (
a  -  [_ v  /  x ]_ A ) )  <  f  <->  ( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A
) )  <  f
) )
7170anbi1d 465 . . . . . . . . . . . . . . 15  |-  ( a  =  [_ u  /  x ]_ A  ->  (
( ( abs `  (
a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  <  g )  <->  ( ( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A ) )  < 
f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B
) )  <  g
) ) )
72 oveq1 5950 . . . . . . . . . . . . . . . . 17  |-  ( a  =  [_ u  /  x ]_ A  ->  (
a  x.  b )  =  ( [_ u  /  x ]_ A  x.  b ) )
7372fvoveq1d 5965 . . . . . . . . . . . . . . . 16  |-  ( a  =  [_ u  /  x ]_ A  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  =  ( abs `  ( (
[_ u  /  x ]_ A  x.  b
)  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) ) )
7473breq1d 4053 . . . . . . . . . . . . . . 15  |-  ( a  =  [_ u  /  x ]_ A  ->  (
( abs `  (
( a  x.  b
)  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e  <->  ( abs `  ( ( [_ u  /  x ]_ A  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )
7571, 74imbi12d 234 . . . . . . . . . . . . . 14  |-  ( a  =  [_ u  /  x ]_ A  ->  (
( ( ( abs `  ( a  -  [_ v  /  x ]_ A
) )  <  f  /\  ( abs `  (
b  -  [_ v  /  x ]_ B ) )  <  g )  ->  ( abs `  (
( a  x.  b
)  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e )  <->  ( (
( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  <  g )  -> 
( abs `  (
( [_ u  /  x ]_ A  x.  b
)  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e ) ) )
76 fvoveq1 5966 . . . . . . . . . . . . . . . . 17  |-  ( b  =  [_ u  /  x ]_ B  ->  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  =  ( abs `  ( [_ u  /  x ]_ B  -  [_ v  /  x ]_ B ) ) )
7776breq1d 4053 . . . . . . . . . . . . . . . 16  |-  ( b  =  [_ u  /  x ]_ B  ->  (
( abs `  (
b  -  [_ v  /  x ]_ B ) )  <  g  <->  ( abs `  ( [_ u  /  x ]_ B  -  [_ v  /  x ]_ B
) )  <  g
) )
7877anbi2d 464 . . . . . . . . . . . . . . 15  |-  ( b  =  [_ u  /  x ]_ B  ->  (
( ( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  <  g )  <->  ( ( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A ) )  < 
f  /\  ( abs `  ( [_ u  /  x ]_ B  -  [_ v  /  x ]_ B
) )  <  g
) ) )
79 oveq2 5951 . . . . . . . . . . . . . . . . 17  |-  ( b  =  [_ u  /  x ]_ B  ->  ( [_ u  /  x ]_ A  x.  b
)  =  ( [_ u  /  x ]_ A  x.  [_ u  /  x ]_ B ) )
8079fvoveq1d 5965 . . . . . . . . . . . . . . . 16  |-  ( b  =  [_ u  /  x ]_ B  ->  ( abs `  ( ( [_ u  /  x ]_ A  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  =  ( abs `  ( (
[_ u  /  x ]_ A  x.  [_ u  /  x ]_ B )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) ) )
8180breq1d 4053 . . . . . . . . . . . . . . 15  |-  ( b  =  [_ u  /  x ]_ B  ->  (
( abs `  (
( [_ u  /  x ]_ A  x.  b
)  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e  <->  ( abs `  ( ( [_ u  /  x ]_ A  x.  [_ u  /  x ]_ B )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )
8278, 81imbi12d 234 . . . . . . . . . . . . . 14  |-  ( b  =  [_ u  /  x ]_ B  ->  (
( ( ( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A
) )  <  f  /\  ( abs `  (
b  -  [_ v  /  x ]_ B ) )  <  g )  ->  ( abs `  (
( [_ u  /  x ]_ A  x.  b
)  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e )  <->  ( (
( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( [_ u  /  x ]_ B  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( [_ u  /  x ]_ A  x.  [_ u  /  x ]_ B )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) ) )
8375, 82rspc2va 2890 . . . . . . . . . . . . 13  |-  ( ( ( [_ u  /  x ]_ A  e.  CC  /\ 
[_ u  /  x ]_ B  e.  CC )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  (
( ( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( [_ u  /  x ]_ B  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( [_ u  /  x ]_ A  x.  [_ u  /  x ]_ B )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )
8464, 67, 68, 83syl21anc 1248 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  /\  ( s  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
s  ->  ( abs `  ( ( ( x  e.  X  |->  A ) `
 u )  -  ( ( x  e.  X  |->  A ) `  v ) ) )  <  f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v ) )  < 
t  ->  ( abs `  ( ( ( x  e.  X  |->  B ) `
 u )  -  ( ( x  e.  X  |->  B ) `  v ) ) )  <  g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  /\  u  e.  X )  ->  (
( ( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( [_ u  /  x ]_ B  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( [_ u  /  x ]_ A  x.  [_ u  /  x ]_ B )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )
8584ex 115 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  (
u  e.  X  -> 
( ( ( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A
) )  <  f  /\  ( abs `  ( [_ u  /  x ]_ B  -  [_ v  /  x ]_ B ) )  <  g )  ->  ( abs `  (
( [_ u  /  x ]_ A  x.  [_ u  /  x ]_ B )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e ) ) )
8660, 85ralrimi 2576 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  A. u  e.  X  ( (
( abs `  ( [_ u  /  x ]_ A  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( [_ u  /  x ]_ B  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( [_ u  /  x ]_ A  x.  [_ u  /  x ]_ B )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )
8738, 39, 40, 41, 42, 43, 45, 46, 48, 49, 86mulcncflem 15021 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  /\  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
) )  ->  E. d  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  d  ->  ( abs `  (
( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  (
( x  e.  X  |->  ( A  x.  B
) ) `  v
) ) )  < 
e ) )
8887ex 115 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  (
f  e.  RR+  /\  g  e.  RR+ ) )  /\  ( s  e.  RR+  /\ 
A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  /\  ( t  e.  RR+  /\  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  t  ->  ( abs `  (
( ( x  e.  X  |->  B ) `  u )  -  (
( x  e.  X  |->  B ) `  v
) ) )  < 
g ) ) )  ->  ( A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
)  ->  E. d  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  d  ->  ( abs `  (
( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  (
( x  e.  X  |->  ( A  x.  B
) ) `  v
) ) )  < 
e ) ) )
8937, 88rexlimddv 2627 . . . . . . 7  |-  ( ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ ) )  /\  (
s  e.  RR+  /\  A. u  e.  X  (
( abs `  (
u  -  v ) )  <  s  -> 
( abs `  (
( ( x  e.  X  |->  A ) `  u )  -  (
( x  e.  X  |->  A ) `  v
) ) )  < 
f ) ) )  ->  ( A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
)  ->  E. d  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  d  ->  ( abs `  (
( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  (
( x  e.  X  |->  ( A  x.  B
) ) `  v
) ) )  < 
e ) ) )
9032, 89rexlimddv 2627 . . . . . 6  |-  ( ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  /\  ( f  e.  RR+  /\  g  e.  RR+ )
)  ->  ( A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
)  ->  E. d  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  d  ->  ( abs `  (
( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  (
( x  e.  X  |->  ( A  x.  B
) ) `  v
) ) )  < 
e ) ) )
9190rexlimdvva 2630 . . . . 5  |-  ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  ->  ( E. f  e.  RR+  E. g  e.  RR+  A. a  e.  CC  A. b  e.  CC  ( ( ( abs `  ( a  -  [_ v  /  x ]_ A ) )  <  f  /\  ( abs `  ( b  -  [_ v  /  x ]_ B ) )  < 
g )  ->  ( abs `  ( ( a  x.  b )  -  ( [_ v  /  x ]_ A  x.  [_ v  /  x ]_ B ) ) )  <  e
)  ->  E. d  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  d  ->  ( abs `  (
( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  (
( x  e.  X  |->  ( A  x.  B
) ) `  v
) ) )  < 
e ) ) )
9226, 91mpd 13 . . . 4  |-  ( ( ( ph  /\  v  e.  X )  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  d  ->  ( abs `  (
( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  (
( x  e.  X  |->  ( A  x.  B
) ) `  v
) ) )  < 
e ) )
9392ralrimiva 2578 . . 3  |-  ( (
ph  /\  v  e.  X )  ->  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  X  ( ( abs `  (
u  -  v ) )  <  d  -> 
( abs `  (
( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  (
( x  e.  X  |->  ( A  x.  B
) ) `  v
) ) )  < 
e ) )
9493ralrimiva 2578 . 2  |-  ( ph  ->  A. v  e.  X  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  d  ->  ( abs `  (
( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  (
( x  e.  X  |->  ( A  x.  B
) ) `  v
) ) )  < 
e ) )
95 cncfrss 14989 . . . 4  |-  ( ( x  e.  X  |->  A )  e.  ( X
-cn-> CC )  ->  X  C_  CC )
961, 95syl 14 . . 3  |-  ( ph  ->  X  C_  CC )
97 ssidd 3213 . . 3  |-  ( ph  ->  CC  C_  CC )
98 elcncf2 14988 . . 3  |-  ( ( X  C_  CC  /\  CC  C_  CC )  ->  (
( x  e.  X  |->  ( A  x.  B
) )  e.  ( X -cn-> CC )  <->  ( (
x  e.  X  |->  ( A  x.  B ) ) : X --> CC  /\  A. v  e.  X  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  d  ->  ( abs `  (
( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  (
( x  e.  X  |->  ( A  x.  B
) ) `  v
) ) )  < 
e ) ) ) )
9996, 97, 98syl2anc 411 . 2  |-  ( ph  ->  ( ( x  e.  X  |->  ( A  x.  B ) )  e.  ( X -cn-> CC )  <-> 
( ( x  e.  X  |->  ( A  x.  B ) ) : X --> CC  /\  A. v  e.  X  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  v
) )  <  d  ->  ( abs `  (
( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  (
( x  e.  X  |->  ( A  x.  B
) ) `  v
) ) )  < 
e ) ) ) )
10016, 94, 99mpbir2and 946 1  |-  ( ph  ->  ( x  e.  X  |->  ( A  x.  B
) )  e.  ( X -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   A.wral 2483   E.wrex 2484   [_csb 3092    C_ wss 3165   class class class wbr 4043    |-> cmpt 4104   -->wf 5266   ` cfv 5270  (class class class)co 5943   CCcc 7922    x. cmul 7929    < clt 8106    - cmin 8242   RR+crp 9774   abscabs 11250   -cn->ccncf 14984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-map 6736  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-rp 9775  df-seqfrec 10591  df-exp 10682  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-cncf 14985
This theorem is referenced by:  expcncf  15023  divcncfap  15028
  Copyright terms: Public domain W3C validator