ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemr Unicode version

Theorem exmidfodomrlemr 7075
Description: The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
exmidfodomrlemr  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  -> EXMID )
Distinct variable group:    x, f, y, z

Proof of Theorem exmidfodomrlemr
Dummy variables  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1509 . . . . . . . . 9  |-  F/ f ( E. z  z  e.  y  /\  y  ~<_  x )
2 nfe1 1473 . . . . . . . . 9  |-  F/ f E. f  f : x -onto-> y
31, 2nfim 1552 . . . . . . . 8  |-  F/ f ( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )
43nfal 1556 . . . . . . 7  |-  F/ f A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )
54nfal 1556 . . . . . 6  |-  F/ f A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )
6 nfv 1509 . . . . . 6  |-  F/ f  u  C_  { (/) }
75, 6nfan 1545 . . . . 5  |-  F/ f ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )
8 nfv 1509 . . . . 5  |-  F/ fDECID  (/)  e.  u
9 simpl 108 . . . . . 6  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y ) )
10 p0ex 4120 . . . . . . . . . . . 12  |-  { (/) }  e.  _V
11 ssdomg 6680 . . . . . . . . . . . 12  |-  ( {
(/) }  e.  _V  ->  ( u  C_  { (/) }  ->  u  ~<_  { (/) } ) )
1210, 11ax-mp 5 . . . . . . . . . . 11  |-  ( u 
C_  { (/) }  ->  u  ~<_  { (/) } )
13 df1o2 6334 . . . . . . . . . . 11  |-  1o  =  { (/) }
1412, 13breqtrrdi 3978 . . . . . . . . . 10  |-  ( u 
C_  { (/) }  ->  u  ~<_  1o )
15 1onn 6424 . . . . . . . . . . 11  |-  1o  e.  om
16 domrefg 6669 . . . . . . . . . . 11  |-  ( 1o  e.  om  ->  1o  ~<_  1o )
1715, 16ax-mp 5 . . . . . . . . . 10  |-  1o  ~<_  1o
18 djudom 6986 . . . . . . . . . 10  |-  ( ( u  ~<_  1o  /\  1o  ~<_  1o )  ->  ( u 1o )  ~<_  ( 1o 1o ) )
1914, 17, 18sylancl 410 . . . . . . . . 9  |-  ( u 
C_  { (/) }  ->  ( u 1o )  ~<_  ( 1o 1o ) )
20 dju1p1e2 7070 . . . . . . . . 9  |-  ( 1o 1o )  ~~  2o
21 domentr 6693 . . . . . . . . 9  |-  ( ( ( u 1o )  ~<_  ( 1o 1o )  /\  ( 1o 1o )  ~~  2o )  ->  ( u 1o )  ~<_  2o )
2219, 20, 21sylancl 410 . . . . . . . 8  |-  ( u 
C_  { (/) }  ->  ( u 1o )  ~<_  2o )
2322adantl 275 . . . . . . 7  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  ( u 1o )  ~<_  2o )
24 0lt1o 6345 . . . . . . . . 9  |-  (/)  e.  1o
25 djurcl 6945 . . . . . . . . 9  |-  ( (/)  e.  1o  ->  (inr `  (/) )  e.  ( u 1o )
)
2624, 25ax-mp 5 . . . . . . . 8  |-  (inr `  (/) )  e.  ( u 1o )
27 elex2 2705 . . . . . . . 8  |-  ( (inr
`  (/) )  e.  ( u 1o )  ->  E. z 
z  e.  ( u 1o ) )
2826, 27ax-mp 5 . . . . . . 7  |-  E. z 
z  e.  ( u 1o )
2923, 28jctil 310 . . . . . 6  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  ( E. z 
z  e.  ( u 1o )  /\  (
u 1o )  ~<_  2o ) )
30 vex 2692 . . . . . . . 8  |-  u  e. 
_V
31 djuex 6936 . . . . . . . 8  |-  ( ( u  e.  _V  /\  1o  e.  om )  -> 
( u 1o )  e.  _V )
3230, 15, 31mp2an 423 . . . . . . 7  |-  ( u 1o )  e.  _V
33 2onn 6425 . . . . . . . 8  |-  2o  e.  om
34 breq2 3941 . . . . . . . . . . . 12  |-  ( x  =  2o  ->  (
y  ~<_  x  <->  y  ~<_  2o ) )
3534anbi2d 460 . . . . . . . . . . 11  |-  ( x  =  2o  ->  (
( E. z  z  e.  y  /\  y  ~<_  x )  <->  ( E. z  z  e.  y  /\  y  ~<_  2o )
) )
36 foeq2 5350 . . . . . . . . . . . 12  |-  ( x  =  2o  ->  (
f : x -onto-> y  <-> 
f : 2o -onto-> y
) )
3736exbidv 1798 . . . . . . . . . . 11  |-  ( x  =  2o  ->  ( E. f  f :
x -onto-> y  <->  E. f 
f : 2o -onto-> y
) )
3835, 37imbi12d 233 . . . . . . . . . 10  |-  ( x  =  2o  ->  (
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  <->  ( ( E. z  z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) ) )
3938albidv 1797 . . . . . . . . 9  |-  ( x  =  2o  ->  ( A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  <->  A. y
( ( E. z 
z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) ) )
4039spcgv 2776 . . . . . . . 8  |-  ( 2o  e.  om  ->  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  A. y
( ( E. z 
z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) ) )
4133, 40ax-mp 5 . . . . . . 7  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  A. y
( ( E. z 
z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) )
42 eleq2 2204 . . . . . . . . . . 11  |-  ( y  =  ( u 1o )  ->  ( z  e.  y  <->  z  e.  ( u 1o ) ) )
4342exbidv 1798 . . . . . . . . . 10  |-  ( y  =  ( u 1o )  ->  ( E. z 
z  e.  y  <->  E. z 
z  e.  ( u 1o ) ) )
44 breq1 3940 . . . . . . . . . 10  |-  ( y  =  ( u 1o )  ->  ( y  ~<_  2o  <->  ( u 1o )  ~<_  2o ) )
4543, 44anbi12d 465 . . . . . . . . 9  |-  ( y  =  ( u 1o )  ->  ( ( E. z  z  e.  y  /\  y  ~<_  2o )  <-> 
( E. z  z  e.  ( u 1o )  /\  ( u 1o )  ~<_  2o ) ) )
46 foeq3 5351 . . . . . . . . . 10  |-  ( y  =  ( u 1o )  ->  ( f : 2o -onto-> y  <->  f : 2o -onto-> ( u 1o ) ) )
4746exbidv 1798 . . . . . . . . 9  |-  ( y  =  ( u 1o )  ->  ( E. f 
f : 2o -onto-> y  <->  E. f  f : 2o -onto->
( u 1o )
) )
4845, 47imbi12d 233 . . . . . . . 8  |-  ( y  =  ( u 1o )  ->  ( ( ( E. z  z  e.  y  /\  y  ~<_  2o )  ->  E. f 
f : 2o -onto-> y
)  <->  ( ( E. z  z  e.  ( u 1o )  /\  (
u 1o )  ~<_  2o )  ->  E. f  f : 2o -onto-> ( u 1o ) ) ) )
4948spcgv 2776 . . . . . . 7  |-  ( ( u 1o )  e.  _V  ->  ( A. y ( ( E. z  z  e.  y  /\  y  ~<_  2o )  ->  E. f 
f : 2o -onto-> y
)  ->  ( ( E. z  z  e.  ( u 1o )  /\  ( u 1o )  ~<_  2o )  ->  E. f 
f : 2o -onto-> (
u 1o ) ) ) )
5032, 41, 49mpsyl 65 . . . . . 6  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  ( ( E. z  z  e.  ( u 1o )  /\  ( u 1o )  ~<_  2o )  ->  E. f 
f : 2o -onto-> (
u 1o ) ) )
519, 29, 50sylc 62 . . . . 5  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  E. f  f : 2o -onto-> ( u 1o ) )
52 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inl
`  (/) ) )  -> 
( f `  (/) )  =  (inl `  (/) ) )
53 fof 5353 . . . . . . . . . . . . 13  |-  ( f : 2o -onto-> ( u 1o )  ->  f : 2o --> ( u 1o ) )
5453adantl 275 . . . . . . . . . . . 12  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  f : 2o
--> ( u 1o )
)
55 elelsuc 4339 . . . . . . . . . . . . . . 15  |-  ( (/)  e.  1o  ->  (/)  e.  suc  1o )
5624, 55ax-mp 5 . . . . . . . . . . . . . 14  |-  (/)  e.  suc  1o
57 df-2o 6322 . . . . . . . . . . . . . 14  |-  2o  =  suc  1o
5856, 57eleqtrri 2216 . . . . . . . . . . . . 13  |-  (/)  e.  2o
5958a1i 9 . . . . . . . . . . . 12  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  (/)  e.  2o )
6054, 59ffvelrnd 5564 . . . . . . . . . . 11  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  ( f `  (/) )  e.  ( u 1o ) )
6160adantr 274 . . . . . . . . . 10  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inl
`  (/) ) )  -> 
( f `  (/) )  e.  ( u 1o )
)
6252, 61eqeltrrd 2218 . . . . . . . . 9  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inl
`  (/) ) )  -> 
(inl `  (/) )  e.  ( u 1o )
)
63 0ex 4063 . . . . . . . . . 10  |-  (/)  e.  _V
64 djulclb 6948 . . . . . . . . . 10  |-  ( (/)  e.  _V  ->  ( (/)  e.  u  <->  (inl
`  (/) )  e.  ( u 1o ) ) )
6563, 64ax-mp 5 . . . . . . . . 9  |-  ( (/)  e.  u  <->  (inl `  (/) )  e.  ( u 1o )
)
6662, 65sylibr 133 . . . . . . . 8  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inl
`  (/) ) )  ->  (/) 
e.  u )
6766orcd 723 . . . . . . 7  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inl
`  (/) ) )  -> 
( (/)  e.  u  \/ 
-.  (/)  e.  u ) )
68 df-dc 821 . . . . . . 7  |-  (DECID  (/)  e.  u  <->  (
(/)  e.  u  \/  -.  (/)  e.  u ) )
6967, 68sylibr 133 . . . . . 6  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inl
`  (/) ) )  -> DECID  (/)  e.  u
)
70 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  (inr `  (/) ) )  /\  ( f `  1o )  =  (inl `  (/) ) )  ->  (
f `  1o )  =  (inl `  (/) ) )
7154adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  -> 
f : 2o --> ( u 1o ) )
72 1oex 6329 . . . . . . . . . . . . . . . 16  |-  1o  e.  _V
7372prid2 3638 . . . . . . . . . . . . . . 15  |-  1o  e.  {
(/) ,  1o }
74 df2o3 6335 . . . . . . . . . . . . . . 15  |-  2o  =  { (/) ,  1o }
7573, 74eleqtrri 2216 . . . . . . . . . . . . . 14  |-  1o  e.  2o
7675a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  ->  1o  e.  2o )
7771, 76ffvelrnd 5564 . . . . . . . . . . . 12  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  -> 
( f `  1o )  e.  ( u 1o ) )
7877adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  (inr `  (/) ) )  /\  ( f `  1o )  =  (inl `  (/) ) )  ->  (
f `  1o )  e.  ( u 1o )
)
7970, 78eqeltrrd 2218 . . . . . . . . . 10  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  (inr `  (/) ) )  /\  ( f `  1o )  =  (inl `  (/) ) )  ->  (inl `  (/) )  e.  (
u 1o ) )
8079, 65sylibr 133 . . . . . . . . 9  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  (inr `  (/) ) )  /\  ( f `  1o )  =  (inl `  (/) ) )  ->  (/)  e.  u
)
8180orcd 723 . . . . . . . 8  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  (inr `  (/) ) )  /\  ( f `  1o )  =  (inl `  (/) ) )  ->  ( (/) 
e.  u  \/  -.  (/) 
e.  u ) )
8281, 68sylibr 133 . . . . . . 7  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  (inr `  (/) ) )  /\  ( f `  1o )  =  (inl `  (/) ) )  -> DECID  (/)  e.  u )
83 simp-4r 532 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  /\  ( f `  1o )  =  (inr `  (/) ) )  /\  (/)  e.  u )  ->  f : 2o -onto->
( u 1o )
)
84 djulcl 6944 . . . . . . . . . . . . 13  |-  ( (/)  e.  u  ->  (inl `  (/) )  e.  ( u 1o ) )
8584adantl 275 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  /\  ( f `  1o )  =  (inr `  (/) ) )  /\  (/)  e.  u )  ->  (inl `  (/) )  e.  ( u 1o )
)
86 foelrn 5662 . . . . . . . . . . . 12  |-  ( ( f : 2o -onto-> (
u 1o )  /\  (inl `  (/) )  e.  (
u 1o ) )  ->  E. w  e.  2o  (inl `  (/) )  =  ( f `  w ) )
8783, 85, 86syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  /\  ( f `  1o )  =  (inr `  (/) ) )  /\  (/)  e.  u )  ->  E. w  e.  2o  (inl `  (/) )  =  ( f `  w ) )
88 simplrr 526 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  /\  ( f `  1o )  =  (inr `  (/) ) )  /\  (/)  e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `
 w ) ) )  /\  w  =  (/) )  ->  (inl `  (/) )  =  ( f `
 w ) )
89 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  /\  ( f `  1o )  =  (inr `  (/) ) )  /\  (/)  e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `
 w ) ) )  /\  w  =  (/) )  ->  w  =  (/) )
9089fveq2d 5433 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  /\  ( f `  1o )  =  (inr `  (/) ) )  /\  (/)  e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `
 w ) ) )  /\  w  =  (/) )  ->  ( f `
 w )  =  ( f `  (/) ) )
91 simp-5r 534 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  /\  ( f `  1o )  =  (inr `  (/) ) )  /\  (/)  e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `
 w ) ) )  /\  w  =  (/) )  ->  ( f `
 (/) )  =  (inr
`  (/) ) )
9288, 90, 913eqtrd 2177 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  /\  ( f `  1o )  =  (inr `  (/) ) )  /\  (/)  e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `
 w ) ) )  /\  w  =  (/) )  ->  (inl `  (/) )  =  (inr `  (/) ) )
93 simplrr 526 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  /\  ( f `  1o )  =  (inr `  (/) ) )  /\  (/)  e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `
 w ) ) )  /\  w  =  1o )  ->  (inl `  (/) )  =  (
f `  w )
)
94 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  /\  ( f `  1o )  =  (inr `  (/) ) )  /\  (/)  e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `
 w ) ) )  /\  w  =  1o )  ->  w  =  1o )
9594fveq2d 5433 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  /\  ( f `  1o )  =  (inr `  (/) ) )  /\  (/)  e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `
 w ) ) )  /\  w  =  1o )  ->  (
f `  w )  =  ( f `  1o ) )
96 simp-4r 532 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  /\  ( f `  1o )  =  (inr `  (/) ) )  /\  (/)  e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `
 w ) ) )  /\  w  =  1o )  ->  (
f `  1o )  =  (inr `  (/) ) )
9793, 95, 963eqtrd 2177 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  /\  ( f `  1o )  =  (inr `  (/) ) )  /\  (/)  e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `
 w ) ) )  /\  w  =  1o )  ->  (inl `  (/) )  =  (inr `  (/) ) )
98 elpri 3555 . . . . . . . . . . . . . 14  |-  ( w  e.  { (/) ,  1o }  ->  ( w  =  (/)  \/  w  =  1o ) )
9998, 74eleq2s 2235 . . . . . . . . . . . . 13  |-  ( w  e.  2o  ->  (
w  =  (/)  \/  w  =  1o ) )
10099ad2antrl 482 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  /\  ( f `  1o )  =  (inr `  (/) ) )  /\  (/)  e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `
 w ) ) )  ->  ( w  =  (/)  \/  w  =  1o ) )
10192, 97, 100mpjaodan 788 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  /\  ( f `  1o )  =  (inr `  (/) ) )  /\  (/)  e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `
 w ) ) )  ->  (inl `  (/) )  =  (inr `  (/) ) )
10287, 101rexlimddv 2557 . . . . . . . . . 10  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  /\  ( f `  1o )  =  (inr `  (/) ) )  /\  (/)  e.  u )  ->  (inl `  (/) )  =  (inr `  (/) ) )
103 djune 6971 . . . . . . . . . . . . 13  |-  ( (
(/)  e.  _V  /\  (/)  e.  _V )  ->  (inl `  (/) )  =/=  (inr `  (/) ) )
10463, 63, 103mp2an 423 . . . . . . . . . . . 12  |-  (inl `  (/) )  =/=  (inr `  (/) )
105104neii 2311 . . . . . . . . . . 11  |-  -.  (inl `  (/) )  =  (inr `  (/) )
106105a1i 9 . . . . . . . . . 10  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  /\  ( f `  1o )  =  (inr `  (/) ) )  /\  (/)  e.  u )  ->  -.  (inl `  (/) )  =  (inr `  (/) ) )
107102, 106pm2.65da 651 . . . . . . . . 9  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  (inr `  (/) ) )  /\  ( f `  1o )  =  (inr `  (/) ) )  ->  -.  (/) 
e.  u )
108107olcd 724 . . . . . . . 8  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  (inr `  (/) ) )  /\  ( f `  1o )  =  (inr `  (/) ) )  ->  ( (/) 
e.  u  \/  -.  (/) 
e.  u ) )
109108, 68sylibr 133 . . . . . . 7  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  (inr `  (/) ) )  /\  ( f `  1o )  =  (inr `  (/) ) )  -> DECID  (/)  e.  u )
110 simplr 520 . . . . . . . . . 10  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  u  C_  { (/) } )
111110, 13sseqtrrdi 3151 . . . . . . . . 9  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  u  C_  1o )
112111adantr 274 . . . . . . . 8  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  ->  u  C_  1o )
113112, 77exmidfodomrlemeldju 7072 . . . . . . 7  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  -> 
( ( f `  1o )  =  (inl `  (/) )  \/  (
f `  1o )  =  (inr `  (/) ) ) )
11482, 109, 113mpjaodan 788 . . . . . 6  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  (inr
`  (/) ) )  -> DECID  (/)  e.  u
)
115111, 60exmidfodomrlemeldju 7072 . . . . . 6  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  ( (
f `  (/) )  =  (inl `  (/) )  \/  ( f `  (/) )  =  (inr `  (/) ) ) )
11669, 114, 115mpjaodan 788 . . . . 5  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  -> DECID  (/)  e.  u )
1177, 8, 51, 116exlimdd 1845 . . . 4  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  -> DECID  (/) 
e.  u )
118117ex 114 . . 3  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  ( u  C_ 
{ (/) }  -> DECID  (/)  e.  u ) )
119118alrimiv 1847 . 2  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  A. u
( u  C_  { (/) }  -> DECID  (/) 
e.  u ) )
120 df-exmid 4127 . 2  |-  (EXMID  <->  A. u
( u  C_  { (/) }  -> DECID  (/) 
e.  u ) )
121119, 120sylibr 133 1  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820   A.wal 1330    = wceq 1332   E.wex 1469    e. wcel 1481    =/= wne 2309   E.wrex 2418   _Vcvv 2689    C_ wss 3076   (/)c0 3368   {csn 3532   {cpr 3533   class class class wbr 3937  EXMIDwem 4126   suc csuc 4295   omcom 4512   -->wf 5127   -onto->wfo 5129   ` cfv 5131   1oc1o 6314   2oc2o 6315    ~~ cen 6640    ~<_ cdom 6641   ⊔ cdju 6930  inlcinl 6938  inrcinr 6939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-exmid 4127  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1st 6046  df-2nd 6047  df-1o 6321  df-2o 6322  df-er 6437  df-en 6643  df-dom 6644  df-dju 6931  df-inl 6940  df-inr 6941  df-case 6977
This theorem is referenced by:  exmidfodomr  7077
  Copyright terms: Public domain W3C validator