ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimclemr Unicode version

Theorem cnplimclemr 12846
Description: Lemma for cnplimccntop 12847. The reverse direction. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
Hypotheses
Ref Expression
cnplimccntop.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
cnplimc.j  |-  J  =  ( Kt  A )
cnplimclemr.a  |-  ( ph  ->  A  C_  CC )
cnplimclemr.f  |-  ( ph  ->  F : A --> CC )
cnplimclemr.b  |-  ( ph  ->  B  e.  A )
cnplimclemr.l  |-  ( ph  ->  ( F `  B
)  e.  ( F lim
CC  B ) )
Assertion
Ref Expression
cnplimclemr  |-  ( ph  ->  F  e.  ( ( J  CnP  K ) `
 B ) )

Proof of Theorem cnplimclemr
Dummy variables  d  e  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnplimclemr.f . . 3  |-  ( ph  ->  F : A --> CC )
2 breq2 3941 . . . . . . . 8  |-  ( s  =  ( e  / 
2 )  ->  (
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  s  <->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  (
e  /  2 ) ) )
32imbi2d 229 . . . . . . 7  |-  ( s  =  ( e  / 
2 )  ->  (
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  s )  <-> 
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) ) )
43rexralbidv 2464 . . . . . 6  |-  ( s  =  ( e  / 
2 )  ->  ( E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  s
)  <->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) ) )
5 cnplimclemr.l . . . . . . . . 9  |-  ( ph  ->  ( F `  B
)  e.  ( F lim
CC  B ) )
6 cnplimclemr.a . . . . . . . . . 10  |-  ( ph  ->  A  C_  CC )
7 cnplimclemr.b . . . . . . . . . . 11  |-  ( ph  ->  B  e.  A )
86, 7sseldd 3103 . . . . . . . . . 10  |-  ( ph  ->  B  e.  CC )
91, 6, 8ellimc3ap 12838 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  B )  e.  ( F lim CC  B )  <-> 
( ( F `  B )  e.  CC  /\ 
A. s  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  s
) ) ) )
105, 9mpbid 146 . . . . . . . 8  |-  ( ph  ->  ( ( F `  B )  e.  CC  /\ 
A. s  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  s
) ) )
1110simprd 113 . . . . . . 7  |-  ( ph  ->  A. s  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  s
) )
1211adantr 274 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  A. s  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  s ) )
13 rphalfcl 9498 . . . . . . 7  |-  ( e  e.  RR+  ->  ( e  /  2 )  e.  RR+ )
1413adantl 275 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( e  /  2 )  e.  RR+ )
154, 12, 14rspcdva 2798 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  (
e  /  2 ) ) )
161ad5antr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  F : A
--> CC )
17 simpllr 524 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  z  e.  A )
1816, 17ffvelrnd 5564 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( F `  z )  e.  CC )
197ad5antr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  B  e.  A )
2016, 19ffvelrnd 5564 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( F `  B )  e.  CC )
21 eqid 2140 . . . . . . . . . . 11  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
2221cnmetdval 12737 . . . . . . . . . 10  |-  ( ( ( F `  z
)  e.  CC  /\  ( F `  B )  e.  CC )  -> 
( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  =  ( abs `  ( ( F `  z )  -  ( F `  B )
) ) )
2318, 20, 22syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( ( F `  z )
( abs  o.  -  )
( F `  B
) )  =  ( abs `  ( ( F `  z )  -  ( F `  B ) ) ) )
24 cnplimccntop.k . . . . . . . . . 10  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
25 cnplimc.j . . . . . . . . . 10  |-  J  =  ( Kt  A )
266ad5antr 488 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  A  C_  CC )
275ad5antr 488 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( F `  B )  e.  ( F lim CC  B ) )
28 simp-5r 534 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  e  e.  RR+ )
29 simp-4r 532 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  d  e.  RR+ )
30 3simpc 981 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  /\  z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d ) )
31 simp1lr 1046 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  /\  z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  (
e  /  2 ) ) )
3230, 31mpd 13 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  /\  z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) )
3317, 19ovresd 5919 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( z
( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  =  ( z ( abs  o.  -  ) B ) )
3426, 17sseldd 3103 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  z  e.  CC )
358ad5antr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  B  e.  CC )
3621cnmetdval 12737 . . . . . . . . . . . . 13  |-  ( ( z  e.  CC  /\  B  e.  CC )  ->  ( z ( abs 
o.  -  ) B
)  =  ( abs `  ( z  -  B
) ) )
3734, 35, 36syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( z
( abs  o.  -  ) B )  =  ( abs `  ( z  -  B ) ) )
3833, 37eqtrd 2173 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( z
( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  =  ( abs `  ( z  -  B ) ) )
39 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( z
( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)
4038, 39eqbrtrrd 3960 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( abs `  ( z  -  B
) )  <  d
)
4124, 25, 26, 16, 19, 27, 28, 29, 17, 32, 40cnplimclemle 12845 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  e
)
4223, 41eqbrtrd 3958 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( ( F `  z )
( abs  o.  -  )
( F `  B
) )  <  e
)
4342exp31 362 . . . . . . 7  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  (
e  /  2 ) )  ->  ( (
z ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) B )  <  d  ->  ( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) )
4443ralimdva 2502 . . . . . 6  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  ->  ( A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) )  ->  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  -> 
( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) )
4544reximdva 2537 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  (
e  /  2 ) )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  ->  ( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) )
4615, 45mpd 13 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  ->  ( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
)
4746ralrimiva 2508 . . 3  |-  ( ph  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) B )  <  d  ->  ( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
)
48 cnxmet 12739 . . . . 5  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
49 xmetres2 12587 . . . . 5  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A ) )
5048, 6, 49sylancr 411 . . . 4  |-  ( ph  ->  ( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A ) )
5148a1i 9 . . . 4  |-  ( ph  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
52 eqid 2140 . . . . 5  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )
5352, 24metcnp2 12721 . . . 4  |-  ( ( ( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A )  /\  ( abs  o.  -  )  e.  ( *Met `  CC )  /\  B  e.  A )  ->  ( F  e.  ( (
( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
K ) `  B
)  <->  ( F : A
--> CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  -> 
( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) ) )
5450, 51, 7, 53syl3anc 1217 . . 3  |-  ( ph  ->  ( F  e.  ( ( ( MetOpen `  (
( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
K ) `  B
)  <->  ( F : A
--> CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  -> 
( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) ) )
551, 47, 54mpbir2and 929 . 2  |-  ( ph  ->  F  e.  ( ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
K ) `  B
) )
56 eqid 2140 . . . . . . 7  |-  ( ( abs  o.  -  )  |`  ( A  X.  A
) )  =  ( ( abs  o.  -  )  |`  ( A  X.  A ) )
5756, 24, 52metrest 12714 . . . . . 6  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( Kt  A )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) ) )
5848, 6, 57sylancr 411 . . . . 5  |-  ( ph  ->  ( Kt  A )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) ) )
5925, 58syl5eq 2185 . . . 4  |-  ( ph  ->  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) ) )
6059oveq1d 5797 . . 3  |-  ( ph  ->  ( J  CnP  K
)  =  ( (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) )  CnP  K ) )
6160fveq1d 5431 . 2  |-  ( ph  ->  ( ( J  CnP  K ) `  B )  =  ( ( (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) )  CnP  K ) `
 B ) )
6255, 61eleqtrrd 2220 1  |-  ( ph  ->  F  e.  ( ( J  CnP  K ) `
 B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418    C_ wss 3076   class class class wbr 3937    X. cxp 4545    |` cres 4549    o. ccom 4551   -->wf 5127   ` cfv 5131  (class class class)co 5782   CCcc 7642    < clt 7824    - cmin 7957   # cap 8367    / cdiv 8456   2c2 8795   RR+crp 9470   abscabs 10801   ↾t crest 12159   *Metcxmet 12188   MetOpencmopn 12193    CnP ccnp 12394   lim CC climc 12831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-map 6552  df-pm 6553  df-sup 6879  df-inf 6880  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-xneg 9589  df-xadd 9590  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-rest 12161  df-topgen 12180  df-psmet 12195  df-xmet 12196  df-met 12197  df-bl 12198  df-mopn 12199  df-top 12204  df-topon 12217  df-bases 12249  df-cnp 12397  df-limced 12833
This theorem is referenced by:  cnplimccntop  12847  dvcnp2cntop  12871
  Copyright terms: Public domain W3C validator