ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimclemr Unicode version

Theorem cnplimclemr 14848
Description: Lemma for cnplimccntop 14849. The reverse direction. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
Hypotheses
Ref Expression
cnplimccntop.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
cnplimc.j  |-  J  =  ( Kt  A )
cnplimclemr.a  |-  ( ph  ->  A  C_  CC )
cnplimclemr.f  |-  ( ph  ->  F : A --> CC )
cnplimclemr.b  |-  ( ph  ->  B  e.  A )
cnplimclemr.l  |-  ( ph  ->  ( F `  B
)  e.  ( F lim
CC  B ) )
Assertion
Ref Expression
cnplimclemr  |-  ( ph  ->  F  e.  ( ( J  CnP  K ) `
 B ) )

Proof of Theorem cnplimclemr
Dummy variables  d  e  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnplimclemr.f . . 3  |-  ( ph  ->  F : A --> CC )
2 breq2 4034 . . . . . . . 8  |-  ( s  =  ( e  / 
2 )  ->  (
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  s  <->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  (
e  /  2 ) ) )
32imbi2d 230 . . . . . . 7  |-  ( s  =  ( e  / 
2 )  ->  (
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  s )  <-> 
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) ) )
43rexralbidv 2520 . . . . . 6  |-  ( s  =  ( e  / 
2 )  ->  ( E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  s
)  <->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) ) )
5 cnplimclemr.l . . . . . . . . 9  |-  ( ph  ->  ( F `  B
)  e.  ( F lim
CC  B ) )
6 cnplimclemr.a . . . . . . . . . 10  |-  ( ph  ->  A  C_  CC )
7 cnplimclemr.b . . . . . . . . . . 11  |-  ( ph  ->  B  e.  A )
86, 7sseldd 3181 . . . . . . . . . 10  |-  ( ph  ->  B  e.  CC )
91, 6, 8ellimc3ap 14840 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  B )  e.  ( F lim CC  B )  <-> 
( ( F `  B )  e.  CC  /\ 
A. s  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  s
) ) ) )
105, 9mpbid 147 . . . . . . . 8  |-  ( ph  ->  ( ( F `  B )  e.  CC  /\ 
A. s  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  s
) ) )
1110simprd 114 . . . . . . 7  |-  ( ph  ->  A. s  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  s
) )
1211adantr 276 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  A. s  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  s ) )
13 rphalfcl 9750 . . . . . . 7  |-  ( e  e.  RR+  ->  ( e  /  2 )  e.  RR+ )
1413adantl 277 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( e  /  2 )  e.  RR+ )
154, 12, 14rspcdva 2870 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  (
e  /  2 ) ) )
161ad5antr 496 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  F : A
--> CC )
17 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  z  e.  A )
1816, 17ffvelcdmd 5695 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( F `  z )  e.  CC )
197ad5antr 496 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  B  e.  A )
2016, 19ffvelcdmd 5695 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( F `  B )  e.  CC )
21 eqid 2193 . . . . . . . . . . 11  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
2221cnmetdval 14708 . . . . . . . . . 10  |-  ( ( ( F `  z
)  e.  CC  /\  ( F `  B )  e.  CC )  -> 
( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  =  ( abs `  ( ( F `  z )  -  ( F `  B )
) ) )
2318, 20, 22syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( ( F `  z )
( abs  o.  -  )
( F `  B
) )  =  ( abs `  ( ( F `  z )  -  ( F `  B ) ) ) )
24 cnplimccntop.k . . . . . . . . . 10  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
25 cnplimc.j . . . . . . . . . 10  |-  J  =  ( Kt  A )
266ad5antr 496 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  A  C_  CC )
275ad5antr 496 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( F `  B )  e.  ( F lim CC  B ) )
28 simp-5r 544 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  e  e.  RR+ )
29 simp-4r 542 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  d  e.  RR+ )
30 3simpc 998 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  /\  z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d ) )
31 simp1lr 1063 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  /\  z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  (
e  /  2 ) ) )
3230, 31mpd 13 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  /\  z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) )
3317, 19ovresd 6061 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( z
( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  =  ( z ( abs  o.  -  ) B ) )
3426, 17sseldd 3181 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  z  e.  CC )
358ad5antr 496 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  B  e.  CC )
3621cnmetdval 14708 . . . . . . . . . . . . 13  |-  ( ( z  e.  CC  /\  B  e.  CC )  ->  ( z ( abs 
o.  -  ) B
)  =  ( abs `  ( z  -  B
) ) )
3734, 35, 36syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( z
( abs  o.  -  ) B )  =  ( abs `  ( z  -  B ) ) )
3833, 37eqtrd 2226 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( z
( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  =  ( abs `  ( z  -  B ) ) )
39 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( z
( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)
4038, 39eqbrtrrd 4054 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( abs `  ( z  -  B
) )  <  d
)
4124, 25, 26, 16, 19, 27, 28, 29, 17, 32, 40cnplimclemle 14847 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  e
)
4223, 41eqbrtrd 4052 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( ( F `  z )
( abs  o.  -  )
( F `  B
) )  <  e
)
4342exp31 364 . . . . . . 7  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  (
e  /  2 ) )  ->  ( (
z ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) B )  <  d  ->  ( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) )
4443ralimdva 2561 . . . . . 6  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  ->  ( A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) )  ->  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  -> 
( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) )
4544reximdva 2596 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  (
e  /  2 ) )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  ->  ( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) )
4615, 45mpd 13 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  ->  ( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
)
4746ralrimiva 2567 . . 3  |-  ( ph  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) B )  <  d  ->  ( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
)
48 cnxmet 14710 . . . . 5  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
49 xmetres2 14558 . . . . 5  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A ) )
5048, 6, 49sylancr 414 . . . 4  |-  ( ph  ->  ( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A ) )
5148a1i 9 . . . 4  |-  ( ph  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
52 eqid 2193 . . . . 5  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )
5352, 24metcnp2 14692 . . . 4  |-  ( ( ( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A )  /\  ( abs  o.  -  )  e.  ( *Met `  CC )  /\  B  e.  A )  ->  ( F  e.  ( (
( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
K ) `  B
)  <->  ( F : A
--> CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  -> 
( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) ) )
5450, 51, 7, 53syl3anc 1249 . . 3  |-  ( ph  ->  ( F  e.  ( ( ( MetOpen `  (
( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
K ) `  B
)  <->  ( F : A
--> CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  -> 
( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) ) )
551, 47, 54mpbir2and 946 . 2  |-  ( ph  ->  F  e.  ( ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
K ) `  B
) )
56 eqid 2193 . . . . . . 7  |-  ( ( abs  o.  -  )  |`  ( A  X.  A
) )  =  ( ( abs  o.  -  )  |`  ( A  X.  A ) )
5756, 24, 52metrest 14685 . . . . . 6  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( Kt  A )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) ) )
5848, 6, 57sylancr 414 . . . . 5  |-  ( ph  ->  ( Kt  A )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) ) )
5925, 58eqtrid 2238 . . . 4  |-  ( ph  ->  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) ) )
6059oveq1d 5934 . . 3  |-  ( ph  ->  ( J  CnP  K
)  =  ( (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) )  CnP  K ) )
6160fveq1d 5557 . 2  |-  ( ph  ->  ( ( J  CnP  K ) `  B )  =  ( ( (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) )  CnP  K ) `
 B ) )
6255, 61eleqtrrd 2273 1  |-  ( ph  ->  F  e.  ( ( J  CnP  K ) `
 B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473    C_ wss 3154   class class class wbr 4030    X. cxp 4658    |` cres 4662    o. ccom 4664   -->wf 5251   ` cfv 5255  (class class class)co 5919   CCcc 7872    < clt 8056    - cmin 8192   # cap 8602    / cdiv 8693   2c2 9035   RR+crp 9722   abscabs 11144   ↾t crest 12853   *Metcxmet 14035   MetOpencmopn 14040    CnP ccnp 14365   lim CC climc 14833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-map 6706  df-pm 6707  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-rest 12855  df-topgen 12874  df-psmet 14042  df-xmet 14043  df-met 14044  df-bl 14045  df-mopn 14046  df-top 14177  df-topon 14190  df-bases 14222  df-cnp 14368  df-limced 14835
This theorem is referenced by:  cnplimccntop  14849  dvcnp2cntop  14878
  Copyright terms: Public domain W3C validator