ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimclemr Unicode version

Theorem cnplimclemr 15343
Description: Lemma for cnplimccntop 15344. The reverse direction. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
Hypotheses
Ref Expression
cnplimccntop.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
cnplimc.j  |-  J  =  ( Kt  A )
cnplimclemr.a  |-  ( ph  ->  A  C_  CC )
cnplimclemr.f  |-  ( ph  ->  F : A --> CC )
cnplimclemr.b  |-  ( ph  ->  B  e.  A )
cnplimclemr.l  |-  ( ph  ->  ( F `  B
)  e.  ( F lim
CC  B ) )
Assertion
Ref Expression
cnplimclemr  |-  ( ph  ->  F  e.  ( ( J  CnP  K ) `
 B ) )

Proof of Theorem cnplimclemr
Dummy variables  d  e  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnplimclemr.f . . 3  |-  ( ph  ->  F : A --> CC )
2 breq2 4087 . . . . . . . 8  |-  ( s  =  ( e  / 
2 )  ->  (
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  s  <->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  (
e  /  2 ) ) )
32imbi2d 230 . . . . . . 7  |-  ( s  =  ( e  / 
2 )  ->  (
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  s )  <-> 
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) ) )
43rexralbidv 2556 . . . . . 6  |-  ( s  =  ( e  / 
2 )  ->  ( E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  s
)  <->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) ) )
5 cnplimclemr.l . . . . . . . . 9  |-  ( ph  ->  ( F `  B
)  e.  ( F lim
CC  B ) )
6 cnplimclemr.a . . . . . . . . . 10  |-  ( ph  ->  A  C_  CC )
7 cnplimclemr.b . . . . . . . . . . 11  |-  ( ph  ->  B  e.  A )
86, 7sseldd 3225 . . . . . . . . . 10  |-  ( ph  ->  B  e.  CC )
91, 6, 8ellimc3ap 15335 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  B )  e.  ( F lim CC  B )  <-> 
( ( F `  B )  e.  CC  /\ 
A. s  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  s
) ) ) )
105, 9mpbid 147 . . . . . . . 8  |-  ( ph  ->  ( ( F `  B )  e.  CC  /\ 
A. s  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  s
) ) )
1110simprd 114 . . . . . . 7  |-  ( ph  ->  A. s  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  s
) )
1211adantr 276 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  A. s  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  s ) )
13 rphalfcl 9877 . . . . . . 7  |-  ( e  e.  RR+  ->  ( e  /  2 )  e.  RR+ )
1413adantl 277 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( e  /  2 )  e.  RR+ )
154, 12, 14rspcdva 2912 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  (
e  /  2 ) ) )
161ad5antr 496 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  F : A
--> CC )
17 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  z  e.  A )
1816, 17ffvelcdmd 5771 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( F `  z )  e.  CC )
197ad5antr 496 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  B  e.  A )
2016, 19ffvelcdmd 5771 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( F `  B )  e.  CC )
21 eqid 2229 . . . . . . . . . . 11  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
2221cnmetdval 15203 . . . . . . . . . 10  |-  ( ( ( F `  z
)  e.  CC  /\  ( F `  B )  e.  CC )  -> 
( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  =  ( abs `  ( ( F `  z )  -  ( F `  B )
) ) )
2318, 20, 22syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( ( F `  z )
( abs  o.  -  )
( F `  B
) )  =  ( abs `  ( ( F `  z )  -  ( F `  B ) ) ) )
24 cnplimccntop.k . . . . . . . . . 10  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
25 cnplimc.j . . . . . . . . . 10  |-  J  =  ( Kt  A )
266ad5antr 496 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  A  C_  CC )
275ad5antr 496 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( F `  B )  e.  ( F lim CC  B ) )
28 simp-5r 544 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  e  e.  RR+ )
29 simp-4r 542 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  d  e.  RR+ )
30 3simpc 1020 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  /\  z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d ) )
31 simp1lr 1085 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  /\  z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  (
e  /  2 ) ) )
3230, 31mpd 13 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  /\  z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) )
3317, 19ovresd 6146 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( z
( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  =  ( z ( abs  o.  -  ) B ) )
3426, 17sseldd 3225 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  z  e.  CC )
358ad5antr 496 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  B  e.  CC )
3621cnmetdval 15203 . . . . . . . . . . . . 13  |-  ( ( z  e.  CC  /\  B  e.  CC )  ->  ( z ( abs 
o.  -  ) B
)  =  ( abs `  ( z  -  B
) ) )
3734, 35, 36syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( z
( abs  o.  -  ) B )  =  ( abs `  ( z  -  B ) ) )
3833, 37eqtrd 2262 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( z
( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  =  ( abs `  ( z  -  B ) ) )
39 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( z
( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)
4038, 39eqbrtrrd 4107 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( abs `  ( z  -  B
) )  <  d
)
4124, 25, 26, 16, 19, 27, 28, 29, 17, 32, 40cnplimclemle 15342 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  e
)
4223, 41eqbrtrd 4105 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( ( F `  z )
( abs  o.  -  )
( F `  B
) )  <  e
)
4342exp31 364 . . . . . . 7  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  (
e  /  2 ) )  ->  ( (
z ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) B )  <  d  ->  ( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) )
4443ralimdva 2597 . . . . . 6  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  ->  ( A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) )  ->  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  -> 
( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) )
4544reximdva 2632 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  (
e  /  2 ) )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  ->  ( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) )
4615, 45mpd 13 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  ->  ( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
)
4746ralrimiva 2603 . . 3  |-  ( ph  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) B )  <  d  ->  ( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
)
48 cnxmet 15205 . . . . 5  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
49 xmetres2 15053 . . . . 5  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A ) )
5048, 6, 49sylancr 414 . . . 4  |-  ( ph  ->  ( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A ) )
5148a1i 9 . . . 4  |-  ( ph  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
52 eqid 2229 . . . . 5  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )
5352, 24metcnp2 15187 . . . 4  |-  ( ( ( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A )  /\  ( abs  o.  -  )  e.  ( *Met `  CC )  /\  B  e.  A )  ->  ( F  e.  ( (
( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
K ) `  B
)  <->  ( F : A
--> CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  -> 
( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) ) )
5450, 51, 7, 53syl3anc 1271 . . 3  |-  ( ph  ->  ( F  e.  ( ( ( MetOpen `  (
( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
K ) `  B
)  <->  ( F : A
--> CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  -> 
( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) ) )
551, 47, 54mpbir2and 950 . 2  |-  ( ph  ->  F  e.  ( ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
K ) `  B
) )
56 eqid 2229 . . . . . . 7  |-  ( ( abs  o.  -  )  |`  ( A  X.  A
) )  =  ( ( abs  o.  -  )  |`  ( A  X.  A ) )
5756, 24, 52metrest 15180 . . . . . 6  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( Kt  A )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) ) )
5848, 6, 57sylancr 414 . . . . 5  |-  ( ph  ->  ( Kt  A )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) ) )
5925, 58eqtrid 2274 . . . 4  |-  ( ph  ->  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) ) )
6059oveq1d 6016 . . 3  |-  ( ph  ->  ( J  CnP  K
)  =  ( (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) )  CnP  K ) )
6160fveq1d 5629 . 2  |-  ( ph  ->  ( ( J  CnP  K ) `  B )  =  ( ( (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) )  CnP  K ) `
 B ) )
6255, 61eleqtrrd 2309 1  |-  ( ph  ->  F  e.  ( ( J  CnP  K ) `
 B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509    C_ wss 3197   class class class wbr 4083    X. cxp 4717    |` cres 4721    o. ccom 4723   -->wf 5314   ` cfv 5318  (class class class)co 6001   CCcc 7997    < clt 8181    - cmin 8317   # cap 8728    / cdiv 8819   2c2 9161   RR+crp 9849   abscabs 11508   ↾t crest 13272   *Metcxmet 14500   MetOpencmopn 14505    CnP ccnp 14860   lim CC climc 15328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-map 6797  df-pm 6798  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-rest 13274  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-met 14509  df-bl 14510  df-mopn 14511  df-top 14672  df-topon 14685  df-bases 14717  df-cnp 14863  df-limced 15330
This theorem is referenced by:  cnplimccntop  15344  dvcnp2cntop  15373
  Copyright terms: Public domain W3C validator