ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimclemr Unicode version

Theorem cnplimclemr 15141
Description: Lemma for cnplimccntop 15142. The reverse direction. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
Hypotheses
Ref Expression
cnplimccntop.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
cnplimc.j  |-  J  =  ( Kt  A )
cnplimclemr.a  |-  ( ph  ->  A  C_  CC )
cnplimclemr.f  |-  ( ph  ->  F : A --> CC )
cnplimclemr.b  |-  ( ph  ->  B  e.  A )
cnplimclemr.l  |-  ( ph  ->  ( F `  B
)  e.  ( F lim
CC  B ) )
Assertion
Ref Expression
cnplimclemr  |-  ( ph  ->  F  e.  ( ( J  CnP  K ) `
 B ) )

Proof of Theorem cnplimclemr
Dummy variables  d  e  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnplimclemr.f . . 3  |-  ( ph  ->  F : A --> CC )
2 breq2 4048 . . . . . . . 8  |-  ( s  =  ( e  / 
2 )  ->  (
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  s  <->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  (
e  /  2 ) ) )
32imbi2d 230 . . . . . . 7  |-  ( s  =  ( e  / 
2 )  ->  (
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  s )  <-> 
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) ) )
43rexralbidv 2532 . . . . . 6  |-  ( s  =  ( e  / 
2 )  ->  ( E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  s
)  <->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) ) )
5 cnplimclemr.l . . . . . . . . 9  |-  ( ph  ->  ( F `  B
)  e.  ( F lim
CC  B ) )
6 cnplimclemr.a . . . . . . . . . 10  |-  ( ph  ->  A  C_  CC )
7 cnplimclemr.b . . . . . . . . . . 11  |-  ( ph  ->  B  e.  A )
86, 7sseldd 3194 . . . . . . . . . 10  |-  ( ph  ->  B  e.  CC )
91, 6, 8ellimc3ap 15133 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  B )  e.  ( F lim CC  B )  <-> 
( ( F `  B )  e.  CC  /\ 
A. s  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  s
) ) ) )
105, 9mpbid 147 . . . . . . . 8  |-  ( ph  ->  ( ( F `  B )  e.  CC  /\ 
A. s  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  s
) ) )
1110simprd 114 . . . . . . 7  |-  ( ph  ->  A. s  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  s
) )
1211adantr 276 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  A. s  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  s ) )
13 rphalfcl 9803 . . . . . . 7  |-  ( e  e.  RR+  ->  ( e  /  2 )  e.  RR+ )
1413adantl 277 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( e  /  2 )  e.  RR+ )
154, 12, 14rspcdva 2882 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  (
e  /  2 ) ) )
161ad5antr 496 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  F : A
--> CC )
17 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  z  e.  A )
1816, 17ffvelcdmd 5716 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( F `  z )  e.  CC )
197ad5antr 496 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  B  e.  A )
2016, 19ffvelcdmd 5716 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( F `  B )  e.  CC )
21 eqid 2205 . . . . . . . . . . 11  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
2221cnmetdval 15001 . . . . . . . . . 10  |-  ( ( ( F `  z
)  e.  CC  /\  ( F `  B )  e.  CC )  -> 
( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  =  ( abs `  ( ( F `  z )  -  ( F `  B )
) ) )
2318, 20, 22syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( ( F `  z )
( abs  o.  -  )
( F `  B
) )  =  ( abs `  ( ( F `  z )  -  ( F `  B ) ) ) )
24 cnplimccntop.k . . . . . . . . . 10  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
25 cnplimc.j . . . . . . . . . 10  |-  J  =  ( Kt  A )
266ad5antr 496 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  A  C_  CC )
275ad5antr 496 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( F `  B )  e.  ( F lim CC  B ) )
28 simp-5r 544 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  e  e.  RR+ )
29 simp-4r 542 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  d  e.  RR+ )
30 3simpc 999 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  /\  z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d ) )
31 simp1lr 1064 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  /\  z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  (
e  /  2 ) ) )
3230, 31mpd 13 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  /\  z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) )
3317, 19ovresd 6087 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( z
( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  =  ( z ( abs  o.  -  ) B ) )
3426, 17sseldd 3194 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  z  e.  CC )
358ad5antr 496 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  B  e.  CC )
3621cnmetdval 15001 . . . . . . . . . . . . 13  |-  ( ( z  e.  CC  /\  B  e.  CC )  ->  ( z ( abs 
o.  -  ) B
)  =  ( abs `  ( z  -  B
) ) )
3734, 35, 36syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( z
( abs  o.  -  ) B )  =  ( abs `  ( z  -  B ) ) )
3833, 37eqtrd 2238 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( z
( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  =  ( abs `  ( z  -  B ) ) )
39 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( z
( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)
4038, 39eqbrtrrd 4068 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( abs `  ( z  -  B
) )  <  d
)
4124, 25, 26, 16, 19, 27, 28, 29, 17, 32, 40cnplimclemle 15140 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  e
)
4223, 41eqbrtrd 4066 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( ( F `  z )
( abs  o.  -  )
( F `  B
) )  <  e
)
4342exp31 364 . . . . . . 7  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  (
e  /  2 ) )  ->  ( (
z ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) B )  <  d  ->  ( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) )
4443ralimdva 2573 . . . . . 6  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  ->  ( A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) )  ->  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  -> 
( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) )
4544reximdva 2608 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  (
e  /  2 ) )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  ->  ( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) )
4615, 45mpd 13 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  ->  ( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
)
4746ralrimiva 2579 . . 3  |-  ( ph  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) B )  <  d  ->  ( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
)
48 cnxmet 15003 . . . . 5  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
49 xmetres2 14851 . . . . 5  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A ) )
5048, 6, 49sylancr 414 . . . 4  |-  ( ph  ->  ( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A ) )
5148a1i 9 . . . 4  |-  ( ph  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
52 eqid 2205 . . . . 5  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )
5352, 24metcnp2 14985 . . . 4  |-  ( ( ( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A )  /\  ( abs  o.  -  )  e.  ( *Met `  CC )  /\  B  e.  A )  ->  ( F  e.  ( (
( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
K ) `  B
)  <->  ( F : A
--> CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  -> 
( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) ) )
5450, 51, 7, 53syl3anc 1250 . . 3  |-  ( ph  ->  ( F  e.  ( ( ( MetOpen `  (
( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
K ) `  B
)  <->  ( F : A
--> CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  -> 
( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) ) )
551, 47, 54mpbir2and 947 . 2  |-  ( ph  ->  F  e.  ( ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
K ) `  B
) )
56 eqid 2205 . . . . . . 7  |-  ( ( abs  o.  -  )  |`  ( A  X.  A
) )  =  ( ( abs  o.  -  )  |`  ( A  X.  A ) )
5756, 24, 52metrest 14978 . . . . . 6  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( Kt  A )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) ) )
5848, 6, 57sylancr 414 . . . . 5  |-  ( ph  ->  ( Kt  A )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) ) )
5925, 58eqtrid 2250 . . . 4  |-  ( ph  ->  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) ) )
6059oveq1d 5959 . . 3  |-  ( ph  ->  ( J  CnP  K
)  =  ( (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) )  CnP  K ) )
6160fveq1d 5578 . 2  |-  ( ph  ->  ( ( J  CnP  K ) `  B )  =  ( ( (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) )  CnP  K ) `
 B ) )
6255, 61eleqtrrd 2285 1  |-  ( ph  ->  F  e.  ( ( J  CnP  K ) `
 B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485    C_ wss 3166   class class class wbr 4044    X. cxp 4673    |` cres 4677    o. ccom 4679   -->wf 5267   ` cfv 5271  (class class class)co 5944   CCcc 7923    < clt 8107    - cmin 8243   # cap 8654    / cdiv 8745   2c2 9087   RR+crp 9775   abscabs 11308   ↾t crest 13071   *Metcxmet 14298   MetOpencmopn 14303    CnP ccnp 14658   lim CC climc 15126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-map 6737  df-pm 6738  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-xneg 9894  df-xadd 9895  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-rest 13073  df-topgen 13092  df-psmet 14305  df-xmet 14306  df-met 14307  df-bl 14308  df-mopn 14309  df-top 14470  df-topon 14483  df-bases 14515  df-cnp 14661  df-limced 15128
This theorem is referenced by:  cnplimccntop  15142  dvcnp2cntop  15171
  Copyright terms: Public domain W3C validator