ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimclemr Unicode version

Theorem cnplimclemr 12681
Description: Lemma for cnplimccntop 12682. The reverse direction. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
Hypotheses
Ref Expression
cnplimccntop.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
cnplimc.j  |-  J  =  ( Kt  A )
cnplimclemr.a  |-  ( ph  ->  A  C_  CC )
cnplimclemr.f  |-  ( ph  ->  F : A --> CC )
cnplimclemr.b  |-  ( ph  ->  B  e.  A )
cnplimclemr.l  |-  ( ph  ->  ( F `  B
)  e.  ( F lim
CC  B ) )
Assertion
Ref Expression
cnplimclemr  |-  ( ph  ->  F  e.  ( ( J  CnP  K ) `
 B ) )

Proof of Theorem cnplimclemr
Dummy variables  d  e  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnplimclemr.f . . 3  |-  ( ph  ->  F : A --> CC )
2 breq2 3901 . . . . . . . 8  |-  ( s  =  ( e  / 
2 )  ->  (
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  s  <->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  (
e  /  2 ) ) )
32imbi2d 229 . . . . . . 7  |-  ( s  =  ( e  / 
2 )  ->  (
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  s )  <-> 
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) ) )
43rexralbidv 2436 . . . . . 6  |-  ( s  =  ( e  / 
2 )  ->  ( E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  s
)  <->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) ) )
5 cnplimclemr.l . . . . . . . . 9  |-  ( ph  ->  ( F `  B
)  e.  ( F lim
CC  B ) )
6 cnplimclemr.a . . . . . . . . . 10  |-  ( ph  ->  A  C_  CC )
7 cnplimclemr.b . . . . . . . . . . 11  |-  ( ph  ->  B  e.  A )
86, 7sseldd 3066 . . . . . . . . . 10  |-  ( ph  ->  B  e.  CC )
91, 6, 8ellimc3ap 12673 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  B )  e.  ( F lim CC  B )  <-> 
( ( F `  B )  e.  CC  /\ 
A. s  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  s
) ) ) )
105, 9mpbid 146 . . . . . . . 8  |-  ( ph  ->  ( ( F `  B )  e.  CC  /\ 
A. s  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  s
) ) )
1110simprd 113 . . . . . . 7  |-  ( ph  ->  A. s  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  s
) )
1211adantr 272 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  A. s  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  s ) )
13 rphalfcl 9417 . . . . . . 7  |-  ( e  e.  RR+  ->  ( e  /  2 )  e.  RR+ )
1413adantl 273 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( e  /  2 )  e.  RR+ )
154, 12, 14rspcdva 2766 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  (
e  /  2 ) ) )
161ad5antr 485 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  F : A
--> CC )
17 simpllr 506 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  z  e.  A )
1816, 17ffvelrnd 5522 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( F `  z )  e.  CC )
197ad5antr 485 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  B  e.  A )
2016, 19ffvelrnd 5522 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( F `  B )  e.  CC )
21 eqid 2115 . . . . . . . . . . 11  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
2221cnmetdval 12593 . . . . . . . . . 10  |-  ( ( ( F `  z
)  e.  CC  /\  ( F `  B )  e.  CC )  -> 
( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  =  ( abs `  ( ( F `  z )  -  ( F `  B )
) ) )
2318, 20, 22syl2anc 406 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( ( F `  z )
( abs  o.  -  )
( F `  B
) )  =  ( abs `  ( ( F `  z )  -  ( F `  B ) ) ) )
24 cnplimccntop.k . . . . . . . . . 10  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
25 cnplimc.j . . . . . . . . . 10  |-  J  =  ( Kt  A )
266ad5antr 485 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  A  C_  CC )
275ad5antr 485 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( F `  B )  e.  ( F lim CC  B ) )
28 simp-5r 516 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  e  e.  RR+ )
29 simp-4r 514 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  d  e.  RR+ )
30 3simpc 963 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  /\  z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d ) )
31 simp1lr 1028 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  /\  z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  (
e  /  2 ) ) )
3230, 31mpd 13 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  /\  z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) )
3317, 19ovresd 5877 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( z
( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  =  ( z ( abs  o.  -  ) B ) )
3426, 17sseldd 3066 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  z  e.  CC )
358ad5antr 485 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  B  e.  CC )
3621cnmetdval 12593 . . . . . . . . . . . . 13  |-  ( ( z  e.  CC  /\  B  e.  CC )  ->  ( z ( abs 
o.  -  ) B
)  =  ( abs `  ( z  -  B
) ) )
3734, 35, 36syl2anc 406 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( z
( abs  o.  -  ) B )  =  ( abs `  ( z  -  B ) ) )
3833, 37eqtrd 2148 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( z
( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  =  ( abs `  ( z  -  B ) ) )
39 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( z
( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)
4038, 39eqbrtrrd 3920 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( abs `  ( z  -  B
) )  <  d
)
4124, 25, 26, 16, 19, 27, 28, 29, 17, 32, 40cnplimclemle 12680 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  e
)
4223, 41eqbrtrd 3918 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  /\  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) ) )  /\  ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d
)  ->  ( ( F `  z )
( abs  o.  -  )
( F `  B
) )  <  e
)
4342exp31 359 . . . . . . 7  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  (
e  /  2 ) )  ->  ( (
z ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) B )  <  d  ->  ( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) )
4443ralimdva 2474 . . . . . 6  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  ->  ( A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  ( e  /  2 ) )  ->  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  -> 
( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) )
4544reximdva 2509 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  (
e  /  2 ) )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  ->  ( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) )
4615, 45mpd 13 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  ->  ( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
)
4746ralrimiva 2480 . . 3  |-  ( ph  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) B )  <  d  ->  ( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
)
48 cnxmet 12595 . . . . 5  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
49 xmetres2 12443 . . . . 5  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A ) )
5048, 6, 49sylancr 408 . . . 4  |-  ( ph  ->  ( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A ) )
5148a1i 9 . . . 4  |-  ( ph  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
52 eqid 2115 . . . . 5  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )
5352, 24metcnp2 12577 . . . 4  |-  ( ( ( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A )  /\  ( abs  o.  -  )  e.  ( *Met `  CC )  /\  B  e.  A )  ->  ( F  e.  ( (
( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
K ) `  B
)  <->  ( F : A
--> CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  -> 
( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) ) )
5450, 51, 7, 53syl3anc 1199 . . 3  |-  ( ph  ->  ( F  e.  ( ( ( MetOpen `  (
( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
K ) `  B
)  <->  ( F : A
--> CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z ( ( abs  o.  -  )  |`  ( A  X.  A ) ) B )  <  d  -> 
( ( F `  z ) ( abs 
o.  -  ) ( F `  B )
)  <  e )
) ) )
551, 47, 54mpbir2and 911 . 2  |-  ( ph  ->  F  e.  ( ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
K ) `  B
) )
56 eqid 2115 . . . . . . 7  |-  ( ( abs  o.  -  )  |`  ( A  X.  A
) )  =  ( ( abs  o.  -  )  |`  ( A  X.  A ) )
5756, 24, 52metrest 12570 . . . . . 6  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( Kt  A )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) ) )
5848, 6, 57sylancr 408 . . . . 5  |-  ( ph  ->  ( Kt  A )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) ) )
5925, 58syl5eq 2160 . . . 4  |-  ( ph  ->  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) ) )
6059oveq1d 5755 . . 3  |-  ( ph  ->  ( J  CnP  K
)  =  ( (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) )  CnP  K ) )
6160fveq1d 5389 . 2  |-  ( ph  ->  ( ( J  CnP  K ) `  B )  =  ( ( (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) )  CnP  K ) `
 B ) )
6255, 61eleqtrrd 2195 1  |-  ( ph  ->  F  e.  ( ( J  CnP  K ) `
 B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 945    = wceq 1314    e. wcel 1463   A.wral 2391   E.wrex 2392    C_ wss 3039   class class class wbr 3897    X. cxp 4505    |` cres 4509    o. ccom 4511   -->wf 5087   ` cfv 5091  (class class class)co 5740   CCcc 7582    < clt 7764    - cmin 7897   # cap 8306    / cdiv 8392   2c2 8728   RR+crp 9390   abscabs 10709   ↾t crest 12015   *Metcxmet 12044   MetOpencmopn 12049    CnP ccnp 12250   lim CC climc 12666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-isom 5100  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-map 6510  df-pm 6511  df-sup 6837  df-inf 6838  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-2 8736  df-3 8737  df-4 8738  df-n0 8929  df-z 9006  df-uz 9276  df-q 9361  df-rp 9391  df-xneg 9499  df-xadd 9500  df-seqfrec 10159  df-exp 10233  df-cj 10554  df-re 10555  df-im 10556  df-rsqrt 10710  df-abs 10711  df-rest 12017  df-topgen 12036  df-psmet 12051  df-xmet 12052  df-met 12053  df-bl 12054  df-mopn 12055  df-top 12060  df-topon 12073  df-bases 12105  df-cnp 12253  df-limced 12668
This theorem is referenced by:  cnplimccntop  12682  dvcnp2cntop  12706
  Copyright terms: Public domain W3C validator