ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp-4r Unicode version

Theorem simp-4r 532
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
simp-4r  |-  ( ( ( ( ( ph  /\ 
ps )  /\  ch )  /\  th )  /\  ta )  ->  ps )

Proof of Theorem simp-4r
StepHypRef Expression
1 simpllr 524 . 2  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th )  ->  ps )
21adantr 274 1  |-  ( ( ( ( ( ph  /\ 
ps )  /\  ch )  /\  th )  /\  ta )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  simp-5r  534  fimax2gtri  6843  finexdc  6844  difinfsn  7038  nnnninfeq2  7066  nninfisol  7070  exmidfodomrlemr  7131  exmidfodomrlemrALT  7132  suplocexprlemru  7633  suplocsrlemb  7720  suplocsrlem  7722  supinfneg  9500  infsupneg  9501  xaddf  9741  xaddval  9742  hashunlem  10671  xrmaxiflemcl  11135  xrmaxiflemlub  11138  xrmaxltsup  11148  sumeq2  11249  fsumconst  11344  prodeq2  11447  fprodconst  11510  cncnp  12601  neitx  12639  dedekindeulemlu  12970  suplociccreex  12973  dedekindicclemlu  12979  cnplimclemr  13009  limccnp2cntop  13017  logbgcd1irrap  13258
  Copyright terms: Public domain W3C validator