ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemrALT Unicode version

Theorem exmidfodomrlemrALT 7233
Description: The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. An alternative proof of exmidfodomrlemr 7232. In particular, this proof uses eldju 7098 instead of djur 7099 and avoids djulclb 7085. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Jim Kingdon, 9-Jul-2022.)
Assertion
Ref Expression
exmidfodomrlemrALT  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  -> EXMID )
Distinct variable group:    x, f, y, z

Proof of Theorem exmidfodomrlemrALT
Dummy variables  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1539 . . . . . . . . 9  |-  F/ f ( E. z  z  e.  y  /\  y  ~<_  x )
2 nfe1 1507 . . . . . . . . 9  |-  F/ f E. f  f : x -onto-> y
31, 2nfim 1583 . . . . . . . 8  |-  F/ f ( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )
43nfal 1587 . . . . . . 7  |-  F/ f A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )
54nfal 1587 . . . . . 6  |-  F/ f A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )
6 nfv 1539 . . . . . 6  |-  F/ f  u  C_  { (/) }
75, 6nfan 1576 . . . . 5  |-  F/ f ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )
8 nfv 1539 . . . . 5  |-  F/ fDECID  (/)  e.  u
9 simpl 109 . . . . . 6  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y ) )
10 p0ex 4206 . . . . . . . . . . . 12  |-  { (/) }  e.  _V
11 ssdomg 6805 . . . . . . . . . . . 12  |-  ( {
(/) }  e.  _V  ->  ( u  C_  { (/) }  ->  u  ~<_  { (/) } ) )
1210, 11ax-mp 5 . . . . . . . . . . 11  |-  ( u 
C_  { (/) }  ->  u  ~<_  { (/) } )
13 df1o2 6455 . . . . . . . . . . 11  |-  1o  =  { (/) }
1412, 13breqtrrdi 4060 . . . . . . . . . 10  |-  ( u 
C_  { (/) }  ->  u  ~<_  1o )
15 1onn 6546 . . . . . . . . . . 11  |-  1o  e.  om
16 domrefg 6794 . . . . . . . . . . 11  |-  ( 1o  e.  om  ->  1o  ~<_  1o )
1715, 16ax-mp 5 . . . . . . . . . 10  |-  1o  ~<_  1o
18 djudom 7123 . . . . . . . . . 10  |-  ( ( u  ~<_  1o  /\  1o  ~<_  1o )  ->  ( u 1o )  ~<_  ( 1o 1o ) )
1914, 17, 18sylancl 413 . . . . . . . . 9  |-  ( u 
C_  { (/) }  ->  ( u 1o )  ~<_  ( 1o 1o ) )
20 dju1p1e2 7227 . . . . . . . . 9  |-  ( 1o 1o )  ~~  2o
21 domentr 6818 . . . . . . . . 9  |-  ( ( ( u 1o )  ~<_  ( 1o 1o )  /\  ( 1o 1o )  ~~  2o )  ->  ( u 1o )  ~<_  2o )
2219, 20, 21sylancl 413 . . . . . . . 8  |-  ( u 
C_  { (/) }  ->  ( u 1o )  ~<_  2o )
2322adantl 277 . . . . . . 7  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  ( u 1o )  ~<_  2o )
24 0lt1o 6466 . . . . . . . . 9  |-  (/)  e.  1o
25 djurcl 7082 . . . . . . . . 9  |-  ( (/)  e.  1o  ->  (inr `  (/) )  e.  ( u 1o )
)
2624, 25ax-mp 5 . . . . . . . 8  |-  (inr `  (/) )  e.  ( u 1o )
27 elex2 2768 . . . . . . . 8  |-  ( (inr
`  (/) )  e.  ( u 1o )  ->  E. z 
z  e.  ( u 1o ) )
2826, 27ax-mp 5 . . . . . . 7  |-  E. z 
z  e.  ( u 1o )
2923, 28jctil 312 . . . . . 6  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  ( E. z 
z  e.  ( u 1o )  /\  (
u 1o )  ~<_  2o ) )
30 vex 2755 . . . . . . . 8  |-  u  e. 
_V
31 djuex 7073 . . . . . . . 8  |-  ( ( u  e.  _V  /\  1o  e.  om )  -> 
( u 1o )  e.  _V )
3230, 15, 31mp2an 426 . . . . . . 7  |-  ( u 1o )  e.  _V
33 2onn 6547 . . . . . . . 8  |-  2o  e.  om
34 breq2 4022 . . . . . . . . . . . 12  |-  ( x  =  2o  ->  (
y  ~<_  x  <->  y  ~<_  2o ) )
3534anbi2d 464 . . . . . . . . . . 11  |-  ( x  =  2o  ->  (
( E. z  z  e.  y  /\  y  ~<_  x )  <->  ( E. z  z  e.  y  /\  y  ~<_  2o )
) )
36 foeq2 5454 . . . . . . . . . . . 12  |-  ( x  =  2o  ->  (
f : x -onto-> y  <-> 
f : 2o -onto-> y
) )
3736exbidv 1836 . . . . . . . . . . 11  |-  ( x  =  2o  ->  ( E. f  f :
x -onto-> y  <->  E. f 
f : 2o -onto-> y
) )
3835, 37imbi12d 234 . . . . . . . . . 10  |-  ( x  =  2o  ->  (
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  <->  ( ( E. z  z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) ) )
3938albidv 1835 . . . . . . . . 9  |-  ( x  =  2o  ->  ( A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  <->  A. y
( ( E. z 
z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) ) )
4039spcgv 2839 . . . . . . . 8  |-  ( 2o  e.  om  ->  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  A. y
( ( E. z 
z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) ) )
4133, 40ax-mp 5 . . . . . . 7  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  A. y
( ( E. z 
z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) )
42 eleq2 2253 . . . . . . . . . . 11  |-  ( y  =  ( u 1o )  ->  ( z  e.  y  <->  z  e.  ( u 1o ) ) )
4342exbidv 1836 . . . . . . . . . 10  |-  ( y  =  ( u 1o )  ->  ( E. z 
z  e.  y  <->  E. z 
z  e.  ( u 1o ) ) )
44 breq1 4021 . . . . . . . . . 10  |-  ( y  =  ( u 1o )  ->  ( y  ~<_  2o  <->  ( u 1o )  ~<_  2o ) )
4543, 44anbi12d 473 . . . . . . . . 9  |-  ( y  =  ( u 1o )  ->  ( ( E. z  z  e.  y  /\  y  ~<_  2o )  <-> 
( E. z  z  e.  ( u 1o )  /\  ( u 1o )  ~<_  2o ) ) )
46 foeq3 5455 . . . . . . . . . 10  |-  ( y  =  ( u 1o )  ->  ( f : 2o -onto-> y  <->  f : 2o -onto-> ( u 1o ) ) )
4746exbidv 1836 . . . . . . . . 9  |-  ( y  =  ( u 1o )  ->  ( E. f 
f : 2o -onto-> y  <->  E. f  f : 2o -onto->
( u 1o )
) )
4845, 47imbi12d 234 . . . . . . . 8  |-  ( y  =  ( u 1o )  ->  ( ( ( E. z  z  e.  y  /\  y  ~<_  2o )  ->  E. f 
f : 2o -onto-> y
)  <->  ( ( E. z  z  e.  ( u 1o )  /\  (
u 1o )  ~<_  2o )  ->  E. f  f : 2o -onto-> ( u 1o ) ) ) )
4948spcgv 2839 . . . . . . 7  |-  ( ( u 1o )  e.  _V  ->  ( A. y ( ( E. z  z  e.  y  /\  y  ~<_  2o )  ->  E. f 
f : 2o -onto-> y
)  ->  ( ( E. z  z  e.  ( u 1o )  /\  ( u 1o )  ~<_  2o )  ->  E. f 
f : 2o -onto-> (
u 1o ) ) ) )
5032, 41, 49mpsyl 65 . . . . . 6  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  ( ( E. z  z  e.  ( u 1o )  /\  ( u 1o )  ~<_  2o )  ->  E. f 
f : 2o -onto-> (
u 1o ) ) )
519, 29, 50sylc 62 . . . . 5  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  E. f  f : 2o -onto-> ( u 1o ) )
52 simprl 529 . . . . . . . 8  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( (/)  e.  u  /\  ( f `  (/) )  =  ( (inl  |`  u
) `  (/) ) ) )  ->  (/)  e.  u
)
5352orcd 734 . . . . . . 7  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( (/)  e.  u  /\  ( f `  (/) )  =  ( (inl  |`  u
) `  (/) ) ) )  ->  ( (/)  e.  u  \/  -.  (/)  e.  u ) )
54 df-dc 836 . . . . . . 7  |-  (DECID  (/)  e.  u  <->  (
(/)  e.  u  \/  -.  (/)  e.  u ) )
5553, 54sylibr 134 . . . . . 6  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( (/)  e.  u  /\  ( f `  (/) )  =  ( (inl  |`  u
) `  (/) ) ) )  -> DECID  (/)  e.  u )
56 simprl 529 . . . . . . . . 9  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( (/)  e.  u  /\  ( f `  1o )  =  ( (inl  |`  u ) `  (/) ) ) )  ->  (/)  e.  u
)
5756orcd 734 . . . . . . . 8  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( (/)  e.  u  /\  ( f `  1o )  =  ( (inl  |`  u ) `  (/) ) ) )  ->  ( (/)  e.  u  \/  -.  (/)  e.  u ) )
5857, 54sylibr 134 . . . . . . 7  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( (/)  e.  u  /\  ( f `  1o )  =  ( (inl  |`  u ) `  (/) ) ) )  -> DECID  (/)  e.  u )
59 simp-4r 542 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  -> 
f : 2o -onto-> (
u 1o ) )
60 djulcl 7081 . . . . . . . . . . . . 13  |-  ( (/)  e.  u  ->  (inl `  (/) )  e.  ( u 1o ) )
6160adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  -> 
(inl `  (/) )  e.  ( u 1o )
)
62 foelrn 5774 . . . . . . . . . . . 12  |-  ( ( f : 2o -onto-> (
u 1o )  /\  (inl `  (/) )  e.  (
u 1o ) )  ->  E. w  e.  2o  (inl `  (/) )  =  ( f `  w ) )
6359, 61, 62syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  ->  E. w  e.  2o  (inl `  (/) )  =  ( f `  w ) )
64 simprr 531 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
(inl `  (/) )  =  ( f `  w
) )
65 fvres 5558 . . . . . . . . . . . . . . . . 17  |-  ( (/)  e.  u  ->  ( (inl  |`  u ) `  (/) )  =  (inl `  (/) ) )
6665eqeq1d 2198 . . . . . . . . . . . . . . . 16  |-  ( (/)  e.  u  ->  ( ( (inl  |`  u ) `  (/) )  =  ( f `
 w )  <->  (inl `  (/) )  =  ( f `  w
) ) )
6766ad2antlr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
( ( (inl  |`  u
) `  (/) )  =  ( f `  w
)  <->  (inl `  (/) )  =  ( f `  w
) ) )
6864, 67mpbird 167 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
( (inl  |`  u
) `  (/) )  =  ( f `  w
) )
6968adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  -> 
( (inl  |`  u
) `  (/) )  =  ( f `  w
) )
70 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  ->  w  =  (/) )
7170fveq2d 5538 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  -> 
( f `  w
)  =  ( f `
 (/) ) )
72 simp-5r 544 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  -> 
( f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
7369, 71, 723eqtrd 2226 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  -> 
( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
7468adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  ( (inl  |`  u
) `  (/) )  =  ( f `  w
) )
75 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  w  =  1o )
7675fveq2d 5538 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  ( f `  w
)  =  ( f `
 1o ) )
77 simp-4r 542 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  ( f `  1o )  =  ( (inr  |`  1o ) `  (/) ) )
7874, 76, 773eqtrd 2226 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  ( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
79 elpri 3630 . . . . . . . . . . . . . 14  |-  ( w  e.  { (/) ,  1o }  ->  ( w  =  (/)  \/  w  =  1o ) )
80 df2o3 6456 . . . . . . . . . . . . . 14  |-  2o  =  { (/) ,  1o }
8179, 80eleq2s 2284 . . . . . . . . . . . . 13  |-  ( w  e.  2o  ->  (
w  =  (/)  \/  w  =  1o ) )
8281ad2antrl 490 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
( w  =  (/)  \/  w  =  1o ) )
8373, 78, 82mpjaodan 799 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
8463, 83rexlimddv 2612 . . . . . . . . . 10  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  -> 
( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
85 0ex 4145 . . . . . . . . . . . . . 14  |-  (/)  e.  _V
86 djune 7108 . . . . . . . . . . . . . 14  |-  ( (
(/)  e.  _V  /\  (/)  e.  _V )  ->  (inl `  (/) )  =/=  (inr `  (/) ) )
8785, 85, 86mp2an 426 . . . . . . . . . . . . 13  |-  (inl `  (/) )  =/=  (inr `  (/) )
8887neii 2362 . . . . . . . . . . . 12  |-  -.  (inl `  (/) )  =  (inr `  (/) )
89 fvres 5558 . . . . . . . . . . . . . . 15  |-  ( (/)  e.  1o  ->  ( (inr  |`  1o ) `  (/) )  =  (inr `  (/) ) )
9024, 89ax-mp 5 . . . . . . . . . . . . . 14  |-  ( (inr  |`  1o ) `  (/) )  =  (inr `  (/) )
9190a1i 9 . . . . . . . . . . . . 13  |-  ( (/)  e.  u  ->  ( (inr  |`  1o ) `  (/) )  =  (inr `  (/) ) )
9265, 91eqeq12d 2204 . . . . . . . . . . . 12  |-  ( (/)  e.  u  ->  ( ( (inl  |`  u ) `  (/) )  =  ( (inr  |`  1o ) `  (/) )  <->  (inl `  (/) )  =  (inr `  (/) ) ) )
9388, 92mtbiri 676 . . . . . . . . . . 11  |-  ( (/)  e.  u  ->  -.  (
(inl  |`  u ) `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )
9493adantl 277 . . . . . . . . . 10  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  ->  -.  ( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
9584, 94pm2.65da 662 . . . . . . . . 9  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( f `  1o )  =  ( (inr  |`  1o ) `  (/) ) )  ->  -.  (/)  e.  u
)
9695olcd 735 . . . . . . . 8  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( f `  1o )  =  ( (inr  |`  1o ) `  (/) ) )  ->  ( (/)  e.  u  \/  -.  (/)  e.  u ) )
9796, 54sylibr 134 . . . . . . 7  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( f `  1o )  =  ( (inr  |`  1o ) `  (/) ) )  -> DECID  (/) 
e.  u )
98 simplr 528 . . . . . . . . . 10  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  u  C_  { (/) } )
9998, 13sseqtrrdi 3219 . . . . . . . . 9  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  u  C_  1o )
10099adantr 276 . . . . . . . 8  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  u  C_  1o )
101 fof 5457 . . . . . . . . . . 11  |-  ( f : 2o -onto-> ( u 1o )  ->  f : 2o --> ( u 1o ) )
102101adantl 277 . . . . . . . . . 10  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  f : 2o
--> ( u 1o )
)
103102adantr 276 . . . . . . . . 9  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  f : 2o --> ( u 1o ) )
104 1oex 6450 . . . . . . . . . . . 12  |-  1o  e.  _V
105104prid2 3714 . . . . . . . . . . 11  |-  1o  e.  {
(/) ,  1o }
106105, 80eleqtrri 2265 . . . . . . . . . 10  |-  1o  e.  2o
107106a1i 9 . . . . . . . . 9  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  1o  e.  2o )
108103, 107ffvelcdmd 5673 . . . . . . . 8  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  (
f `  1o )  e.  ( u 1o )
)
109100, 108exmidfodomrlemreseldju 7230 . . . . . . 7  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  (
( (/)  e.  u  /\  ( f `  1o )  =  ( (inl  |`  u ) `  (/) ) )  \/  ( f `  1o )  =  (
(inr  |`  1o ) `  (/) ) ) )
11058, 97, 109mpjaodan 799 . . . . . 6  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  -> DECID  (/)  e.  u )
111 elelsuc 4427 . . . . . . . . . . 11  |-  ( (/)  e.  1o  ->  (/)  e.  suc  1o )
11224, 111ax-mp 5 . . . . . . . . . 10  |-  (/)  e.  suc  1o
113 df-2o 6443 . . . . . . . . . 10  |-  2o  =  suc  1o
114112, 113eleqtrri 2265 . . . . . . . . 9  |-  (/)  e.  2o
115114a1i 9 . . . . . . . 8  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  (/)  e.  2o )
116102, 115ffvelcdmd 5673 . . . . . . 7  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  ( f `  (/) )  e.  ( u 1o ) )
11799, 116exmidfodomrlemreseldju 7230 . . . . . 6  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  ( ( (/) 
e.  u  /\  (
f `  (/) )  =  ( (inl  |`  u
) `  (/) ) )  \/  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) ) )
11855, 110, 117mpjaodan 799 . . . . 5  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  -> DECID  (/)  e.  u )
1197, 8, 51, 118exlimdd 1883 . . . 4  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  -> DECID  (/) 
e.  u )
120119ex 115 . . 3  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  ( u  C_ 
{ (/) }  -> DECID  (/)  e.  u ) )
121120alrimiv 1885 . 2  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  A. u
( u  C_  { (/) }  -> DECID  (/) 
e.  u ) )
122 df-exmid 4213 . 2  |-  (EXMID  <->  A. u
( u  C_  { (/) }  -> DECID  (/) 
e.  u ) )
123121, 122sylibr 134 1  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835   A.wal 1362    = wceq 1364   E.wex 1503    e. wcel 2160    =/= wne 2360   E.wrex 2469   _Vcvv 2752    C_ wss 3144   (/)c0 3437   {csn 3607   {cpr 3608   class class class wbr 4018  EXMIDwem 4212   suc csuc 4383   omcom 4607    |` cres 4646   -->wf 5231   -onto->wfo 5233   ` cfv 5235   1oc1o 6435   2oc2o 6436    ~~ cen 6765    ~<_ cdom 6766   ⊔ cdju 7067  inlcinl 7075  inrcinr 7076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-exmid 4213  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-1st 6166  df-2nd 6167  df-1o 6442  df-2o 6443  df-er 6560  df-en 6768  df-dom 6769  df-dju 7068  df-inl 7077  df-inr 7078  df-case 7114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator