ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemrALT Unicode version

Theorem exmidfodomrlemrALT 6968
Description: The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. An alternative proof of exmidfodomrlemr 6967. In particular, this proof uses eldju 6868 instead of djur 6869 and avoids djulclb 6855. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Jim Kingdon, 9-Jul-2022.)
Assertion
Ref Expression
exmidfodomrlemrALT  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  -> EXMID )
Distinct variable group:    x, f, y, z

Proof of Theorem exmidfodomrlemrALT
Dummy variables  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1476 . . . . . . . . 9  |-  F/ f ( E. z  z  e.  y  /\  y  ~<_  x )
2 nfe1 1440 . . . . . . . . 9  |-  F/ f E. f  f : x -onto-> y
31, 2nfim 1519 . . . . . . . 8  |-  F/ f ( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )
43nfal 1523 . . . . . . 7  |-  F/ f A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )
54nfal 1523 . . . . . 6  |-  F/ f A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )
6 nfv 1476 . . . . . 6  |-  F/ f  u  C_  { (/) }
75, 6nfan 1512 . . . . 5  |-  F/ f ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )
8 nfv 1476 . . . . 5  |-  F/ fDECID  (/)  e.  u
9 simpl 108 . . . . . 6  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y ) )
10 p0ex 4052 . . . . . . . . . . . 12  |-  { (/) }  e.  _V
11 ssdomg 6602 . . . . . . . . . . . 12  |-  ( {
(/) }  e.  _V  ->  ( u  C_  { (/) }  ->  u  ~<_  { (/) } ) )
1210, 11ax-mp 7 . . . . . . . . . . 11  |-  ( u 
C_  { (/) }  ->  u  ~<_  { (/) } )
13 df1o2 6256 . . . . . . . . . . 11  |-  1o  =  { (/) }
1412, 13syl6breqr 3915 . . . . . . . . . 10  |-  ( u 
C_  { (/) }  ->  u  ~<_  1o )
15 1onn 6346 . . . . . . . . . . 11  |-  1o  e.  om
16 domrefg 6591 . . . . . . . . . . 11  |-  ( 1o  e.  om  ->  1o  ~<_  1o )
1715, 16ax-mp 7 . . . . . . . . . 10  |-  1o  ~<_  1o
18 djudom 6893 . . . . . . . . . 10  |-  ( ( u  ~<_  1o  /\  1o  ~<_  1o )  ->  ( u 1o )  ~<_  ( 1o 1o ) )
1914, 17, 18sylancl 407 . . . . . . . . 9  |-  ( u 
C_  { (/) }  ->  ( u 1o )  ~<_  ( 1o 1o ) )
20 dju1p1e2 6962 . . . . . . . . 9  |-  ( 1o 1o )  ~~  2o
21 domentr 6615 . . . . . . . . 9  |-  ( ( ( u 1o )  ~<_  ( 1o 1o )  /\  ( 1o 1o )  ~~  2o )  ->  ( u 1o )  ~<_  2o )
2219, 20, 21sylancl 407 . . . . . . . 8  |-  ( u 
C_  { (/) }  ->  ( u 1o )  ~<_  2o )
2322adantl 273 . . . . . . 7  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  ( u 1o )  ~<_  2o )
24 0lt1o 6267 . . . . . . . . 9  |-  (/)  e.  1o
25 djurcl 6852 . . . . . . . . 9  |-  ( (/)  e.  1o  ->  (inr `  (/) )  e.  ( u 1o )
)
2624, 25ax-mp 7 . . . . . . . 8  |-  (inr `  (/) )  e.  ( u 1o )
27 elex2 2657 . . . . . . . 8  |-  ( (inr
`  (/) )  e.  ( u 1o )  ->  E. z 
z  e.  ( u 1o ) )
2826, 27ax-mp 7 . . . . . . 7  |-  E. z 
z  e.  ( u 1o )
2923, 28jctil 308 . . . . . 6  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  ( E. z 
z  e.  ( u 1o )  /\  (
u 1o )  ~<_  2o ) )
30 vex 2644 . . . . . . . 8  |-  u  e. 
_V
31 djuex 6843 . . . . . . . 8  |-  ( ( u  e.  _V  /\  1o  e.  om )  -> 
( u 1o )  e.  _V )
3230, 15, 31mp2an 420 . . . . . . 7  |-  ( u 1o )  e.  _V
33 2onn 6347 . . . . . . . 8  |-  2o  e.  om
34 breq2 3879 . . . . . . . . . . . 12  |-  ( x  =  2o  ->  (
y  ~<_  x  <->  y  ~<_  2o ) )
3534anbi2d 455 . . . . . . . . . . 11  |-  ( x  =  2o  ->  (
( E. z  z  e.  y  /\  y  ~<_  x )  <->  ( E. z  z  e.  y  /\  y  ~<_  2o )
) )
36 foeq2 5278 . . . . . . . . . . . 12  |-  ( x  =  2o  ->  (
f : x -onto-> y  <-> 
f : 2o -onto-> y
) )
3736exbidv 1764 . . . . . . . . . . 11  |-  ( x  =  2o  ->  ( E. f  f :
x -onto-> y  <->  E. f 
f : 2o -onto-> y
) )
3835, 37imbi12d 233 . . . . . . . . . 10  |-  ( x  =  2o  ->  (
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  <->  ( ( E. z  z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) ) )
3938albidv 1763 . . . . . . . . 9  |-  ( x  =  2o  ->  ( A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  <->  A. y
( ( E. z 
z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) ) )
4039spcgv 2728 . . . . . . . 8  |-  ( 2o  e.  om  ->  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  A. y
( ( E. z 
z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) ) )
4133, 40ax-mp 7 . . . . . . 7  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  A. y
( ( E. z 
z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) )
42 eleq2 2163 . . . . . . . . . . 11  |-  ( y  =  ( u 1o )  ->  ( z  e.  y  <->  z  e.  ( u 1o ) ) )
4342exbidv 1764 . . . . . . . . . 10  |-  ( y  =  ( u 1o )  ->  ( E. z 
z  e.  y  <->  E. z 
z  e.  ( u 1o ) ) )
44 breq1 3878 . . . . . . . . . 10  |-  ( y  =  ( u 1o )  ->  ( y  ~<_  2o  <->  ( u 1o )  ~<_  2o ) )
4543, 44anbi12d 460 . . . . . . . . 9  |-  ( y  =  ( u 1o )  ->  ( ( E. z  z  e.  y  /\  y  ~<_  2o )  <-> 
( E. z  z  e.  ( u 1o )  /\  ( u 1o )  ~<_  2o ) ) )
46 foeq3 5279 . . . . . . . . . 10  |-  ( y  =  ( u 1o )  ->  ( f : 2o -onto-> y  <->  f : 2o -onto-> ( u 1o ) ) )
4746exbidv 1764 . . . . . . . . 9  |-  ( y  =  ( u 1o )  ->  ( E. f 
f : 2o -onto-> y  <->  E. f  f : 2o -onto->
( u 1o )
) )
4845, 47imbi12d 233 . . . . . . . 8  |-  ( y  =  ( u 1o )  ->  ( ( ( E. z  z  e.  y  /\  y  ~<_  2o )  ->  E. f 
f : 2o -onto-> y
)  <->  ( ( E. z  z  e.  ( u 1o )  /\  (
u 1o )  ~<_  2o )  ->  E. f  f : 2o -onto-> ( u 1o ) ) ) )
4948spcgv 2728 . . . . . . 7  |-  ( ( u 1o )  e.  _V  ->  ( A. y ( ( E. z  z  e.  y  /\  y  ~<_  2o )  ->  E. f 
f : 2o -onto-> y
)  ->  ( ( E. z  z  e.  ( u 1o )  /\  ( u 1o )  ~<_  2o )  ->  E. f 
f : 2o -onto-> (
u 1o ) ) ) )
5032, 41, 49mpsyl 65 . . . . . 6  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  ( ( E. z  z  e.  ( u 1o )  /\  ( u 1o )  ~<_  2o )  ->  E. f 
f : 2o -onto-> (
u 1o ) ) )
519, 29, 50sylc 62 . . . . 5  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  E. f  f : 2o -onto-> ( u 1o ) )
52 simprl 501 . . . . . . . 8  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( (/)  e.  u  /\  ( f `  (/) )  =  ( (inl  |`  u
) `  (/) ) ) )  ->  (/)  e.  u
)
5352orcd 693 . . . . . . 7  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( (/)  e.  u  /\  ( f `  (/) )  =  ( (inl  |`  u
) `  (/) ) ) )  ->  ( (/)  e.  u  \/  -.  (/)  e.  u ) )
54 df-dc 787 . . . . . . 7  |-  (DECID  (/)  e.  u  <->  (
(/)  e.  u  \/  -.  (/)  e.  u ) )
5553, 54sylibr 133 . . . . . 6  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( (/)  e.  u  /\  ( f `  (/) )  =  ( (inl  |`  u
) `  (/) ) ) )  -> DECID  (/)  e.  u )
56 simprl 501 . . . . . . . . 9  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( (/)  e.  u  /\  ( f `  1o )  =  ( (inl  |`  u ) `  (/) ) ) )  ->  (/)  e.  u
)
5756orcd 693 . . . . . . . 8  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( (/)  e.  u  /\  ( f `  1o )  =  ( (inl  |`  u ) `  (/) ) ) )  ->  ( (/)  e.  u  \/  -.  (/)  e.  u ) )
5857, 54sylibr 133 . . . . . . 7  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( (/)  e.  u  /\  ( f `  1o )  =  ( (inl  |`  u ) `  (/) ) ) )  -> DECID  (/)  e.  u )
59 simp-4r 512 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  -> 
f : 2o -onto-> (
u 1o ) )
60 djulcl 6851 . . . . . . . . . . . . 13  |-  ( (/)  e.  u  ->  (inl `  (/) )  e.  ( u 1o ) )
6160adantl 273 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  -> 
(inl `  (/) )  e.  ( u 1o )
)
62 foelrn 5586 . . . . . . . . . . . 12  |-  ( ( f : 2o -onto-> (
u 1o )  /\  (inl `  (/) )  e.  (
u 1o ) )  ->  E. w  e.  2o  (inl `  (/) )  =  ( f `  w ) )
6359, 61, 62syl2anc 406 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  ->  E. w  e.  2o  (inl `  (/) )  =  ( f `  w ) )
64 simprr 502 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
(inl `  (/) )  =  ( f `  w
) )
65 fvres 5377 . . . . . . . . . . . . . . . . 17  |-  ( (/)  e.  u  ->  ( (inl  |`  u ) `  (/) )  =  (inl `  (/) ) )
6665eqeq1d 2108 . . . . . . . . . . . . . . . 16  |-  ( (/)  e.  u  ->  ( ( (inl  |`  u ) `  (/) )  =  ( f `
 w )  <->  (inl `  (/) )  =  ( f `  w
) ) )
6766ad2antlr 476 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
( ( (inl  |`  u
) `  (/) )  =  ( f `  w
)  <->  (inl `  (/) )  =  ( f `  w
) ) )
6864, 67mpbird 166 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
( (inl  |`  u
) `  (/) )  =  ( f `  w
) )
6968adantr 272 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  -> 
( (inl  |`  u
) `  (/) )  =  ( f `  w
) )
70 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  ->  w  =  (/) )
7170fveq2d 5357 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  -> 
( f `  w
)  =  ( f `
 (/) ) )
72 simp-5r 514 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  -> 
( f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
7369, 71, 723eqtrd 2136 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  -> 
( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
7468adantr 272 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  ( (inl  |`  u
) `  (/) )  =  ( f `  w
) )
75 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  w  =  1o )
7675fveq2d 5357 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  ( f `  w
)  =  ( f `
 1o ) )
77 simp-4r 512 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  ( f `  1o )  =  ( (inr  |`  1o ) `  (/) ) )
7874, 76, 773eqtrd 2136 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  ( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
79 elpri 3497 . . . . . . . . . . . . . 14  |-  ( w  e.  { (/) ,  1o }  ->  ( w  =  (/)  \/  w  =  1o ) )
80 df2o3 6257 . . . . . . . . . . . . . 14  |-  2o  =  { (/) ,  1o }
8179, 80eleq2s 2194 . . . . . . . . . . . . 13  |-  ( w  e.  2o  ->  (
w  =  (/)  \/  w  =  1o ) )
8281ad2antrl 477 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
( w  =  (/)  \/  w  =  1o ) )
8373, 78, 82mpjaodan 753 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
8463, 83rexlimddv 2513 . . . . . . . . . 10  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  -> 
( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
85 0ex 3995 . . . . . . . . . . . . . 14  |-  (/)  e.  _V
86 djune 6878 . . . . . . . . . . . . . 14  |-  ( (
(/)  e.  _V  /\  (/)  e.  _V )  ->  (inl `  (/) )  =/=  (inr `  (/) ) )
8785, 85, 86mp2an 420 . . . . . . . . . . . . 13  |-  (inl `  (/) )  =/=  (inr `  (/) )
8887neii 2269 . . . . . . . . . . . 12  |-  -.  (inl `  (/) )  =  (inr `  (/) )
89 fvres 5377 . . . . . . . . . . . . . . 15  |-  ( (/)  e.  1o  ->  ( (inr  |`  1o ) `  (/) )  =  (inr `  (/) ) )
9024, 89ax-mp 7 . . . . . . . . . . . . . 14  |-  ( (inr  |`  1o ) `  (/) )  =  (inr `  (/) )
9190a1i 9 . . . . . . . . . . . . 13  |-  ( (/)  e.  u  ->  ( (inr  |`  1o ) `  (/) )  =  (inr `  (/) ) )
9265, 91eqeq12d 2114 . . . . . . . . . . . 12  |-  ( (/)  e.  u  ->  ( ( (inl  |`  u ) `  (/) )  =  ( (inr  |`  1o ) `  (/) )  <->  (inl `  (/) )  =  (inr `  (/) ) ) )
9388, 92mtbiri 641 . . . . . . . . . . 11  |-  ( (/)  e.  u  ->  -.  (
(inl  |`  u ) `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )
9493adantl 273 . . . . . . . . . 10  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  ->  -.  ( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
9584, 94pm2.65da 628 . . . . . . . . 9  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( f `  1o )  =  ( (inr  |`  1o ) `  (/) ) )  ->  -.  (/)  e.  u
)
9695olcd 694 . . . . . . . 8  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( f `  1o )  =  ( (inr  |`  1o ) `  (/) ) )  ->  ( (/)  e.  u  \/  -.  (/)  e.  u ) )
9796, 54sylibr 133 . . . . . . 7  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( f `  1o )  =  ( (inr  |`  1o ) `  (/) ) )  -> DECID  (/) 
e.  u )
98 simplr 500 . . . . . . . . . 10  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  u  C_  { (/) } )
9998, 13syl6sseqr 3096 . . . . . . . . 9  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  u  C_  1o )
10099adantr 272 . . . . . . . 8  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  u  C_  1o )
101 fof 5281 . . . . . . . . . . 11  |-  ( f : 2o -onto-> ( u 1o )  ->  f : 2o --> ( u 1o ) )
102101adantl 273 . . . . . . . . . 10  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  f : 2o
--> ( u 1o )
)
103102adantr 272 . . . . . . . . 9  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  f : 2o --> ( u 1o ) )
104 1oex 6251 . . . . . . . . . . . 12  |-  1o  e.  _V
105104prid2 3577 . . . . . . . . . . 11  |-  1o  e.  {
(/) ,  1o }
106105, 80eleqtrri 2175 . . . . . . . . . 10  |-  1o  e.  2o
107106a1i 9 . . . . . . . . 9  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  1o  e.  2o )
108103, 107ffvelrnd 5488 . . . . . . . 8  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  (
f `  1o )  e.  ( u 1o )
)
109100, 108exmidfodomrlemreseldju 6965 . . . . . . 7  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  (
( (/)  e.  u  /\  ( f `  1o )  =  ( (inl  |`  u ) `  (/) ) )  \/  ( f `  1o )  =  (
(inr  |`  1o ) `  (/) ) ) )
11058, 97, 109mpjaodan 753 . . . . . 6  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  -> DECID  (/)  e.  u )
111 elelsuc 4269 . . . . . . . . . . 11  |-  ( (/)  e.  1o  ->  (/)  e.  suc  1o )
11224, 111ax-mp 7 . . . . . . . . . 10  |-  (/)  e.  suc  1o
113 df-2o 6244 . . . . . . . . . 10  |-  2o  =  suc  1o
114112, 113eleqtrri 2175 . . . . . . . . 9  |-  (/)  e.  2o
115114a1i 9 . . . . . . . 8  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  (/)  e.  2o )
116102, 115ffvelrnd 5488 . . . . . . 7  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  ( f `  (/) )  e.  ( u 1o ) )
11799, 116exmidfodomrlemreseldju 6965 . . . . . 6  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  ( ( (/) 
e.  u  /\  (
f `  (/) )  =  ( (inl  |`  u
) `  (/) ) )  \/  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) ) )
11855, 110, 117mpjaodan 753 . . . . 5  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  -> DECID  (/)  e.  u )
1197, 8, 51, 118exlimdd 1811 . . . 4  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  -> DECID  (/) 
e.  u )
120119ex 114 . . 3  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  ( u  C_ 
{ (/) }  -> DECID  (/)  e.  u ) )
121120alrimiv 1813 . 2  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  A. u
( u  C_  { (/) }  -> DECID  (/) 
e.  u ) )
122 df-exmid 4059 . 2  |-  (EXMID  <->  A. u
( u  C_  { (/) }  -> DECID  (/) 
e.  u ) )
123121, 122sylibr 133 1  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 670  DECID wdc 786   A.wal 1297    = wceq 1299   E.wex 1436    e. wcel 1448    =/= wne 2267   E.wrex 2376   _Vcvv 2641    C_ wss 3021   (/)c0 3310   {csn 3474   {cpr 3475   class class class wbr 3875  EXMIDwem 4058   suc csuc 4225   omcom 4442    |` cres 4479   -->wf 5055   -onto->wfo 5057   ` cfv 5059   1oc1o 6236   2oc2o 6237    ~~ cen 6562    ~<_ cdom 6563   ⊔ cdju 6837  inlcinl 6845  inrcinr 6846
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-exmid 4059  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-1st 5969  df-2nd 5970  df-1o 6243  df-2o 6244  df-er 6359  df-en 6565  df-dom 6566  df-dju 6838  df-inl 6847  df-inr 6848  df-case 6884
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator