ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemrALT Unicode version

Theorem exmidfodomrlemrALT 7180
Description: The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. An alternative proof of exmidfodomrlemr 7179. In particular, this proof uses eldju 7045 instead of djur 7046 and avoids djulclb 7032. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Jim Kingdon, 9-Jul-2022.)
Assertion
Ref Expression
exmidfodomrlemrALT  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  -> EXMID )
Distinct variable group:    x, f, y, z

Proof of Theorem exmidfodomrlemrALT
Dummy variables  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1521 . . . . . . . . 9  |-  F/ f ( E. z  z  e.  y  /\  y  ~<_  x )
2 nfe1 1489 . . . . . . . . 9  |-  F/ f E. f  f : x -onto-> y
31, 2nfim 1565 . . . . . . . 8  |-  F/ f ( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )
43nfal 1569 . . . . . . 7  |-  F/ f A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )
54nfal 1569 . . . . . 6  |-  F/ f A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )
6 nfv 1521 . . . . . 6  |-  F/ f  u  C_  { (/) }
75, 6nfan 1558 . . . . 5  |-  F/ f ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )
8 nfv 1521 . . . . 5  |-  F/ fDECID  (/)  e.  u
9 simpl 108 . . . . . 6  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y ) )
10 p0ex 4174 . . . . . . . . . . . 12  |-  { (/) }  e.  _V
11 ssdomg 6756 . . . . . . . . . . . 12  |-  ( {
(/) }  e.  _V  ->  ( u  C_  { (/) }  ->  u  ~<_  { (/) } ) )
1210, 11ax-mp 5 . . . . . . . . . . 11  |-  ( u 
C_  { (/) }  ->  u  ~<_  { (/) } )
13 df1o2 6408 . . . . . . . . . . 11  |-  1o  =  { (/) }
1412, 13breqtrrdi 4031 . . . . . . . . . 10  |-  ( u 
C_  { (/) }  ->  u  ~<_  1o )
15 1onn 6499 . . . . . . . . . . 11  |-  1o  e.  om
16 domrefg 6745 . . . . . . . . . . 11  |-  ( 1o  e.  om  ->  1o  ~<_  1o )
1715, 16ax-mp 5 . . . . . . . . . 10  |-  1o  ~<_  1o
18 djudom 7070 . . . . . . . . . 10  |-  ( ( u  ~<_  1o  /\  1o  ~<_  1o )  ->  ( u 1o )  ~<_  ( 1o 1o ) )
1914, 17, 18sylancl 411 . . . . . . . . 9  |-  ( u 
C_  { (/) }  ->  ( u 1o )  ~<_  ( 1o 1o ) )
20 dju1p1e2 7174 . . . . . . . . 9  |-  ( 1o 1o )  ~~  2o
21 domentr 6769 . . . . . . . . 9  |-  ( ( ( u 1o )  ~<_  ( 1o 1o )  /\  ( 1o 1o )  ~~  2o )  ->  ( u 1o )  ~<_  2o )
2219, 20, 21sylancl 411 . . . . . . . 8  |-  ( u 
C_  { (/) }  ->  ( u 1o )  ~<_  2o )
2322adantl 275 . . . . . . 7  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  ( u 1o )  ~<_  2o )
24 0lt1o 6419 . . . . . . . . 9  |-  (/)  e.  1o
25 djurcl 7029 . . . . . . . . 9  |-  ( (/)  e.  1o  ->  (inr `  (/) )  e.  ( u 1o )
)
2624, 25ax-mp 5 . . . . . . . 8  |-  (inr `  (/) )  e.  ( u 1o )
27 elex2 2746 . . . . . . . 8  |-  ( (inr
`  (/) )  e.  ( u 1o )  ->  E. z 
z  e.  ( u 1o ) )
2826, 27ax-mp 5 . . . . . . 7  |-  E. z 
z  e.  ( u 1o )
2923, 28jctil 310 . . . . . 6  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  ( E. z 
z  e.  ( u 1o )  /\  (
u 1o )  ~<_  2o ) )
30 vex 2733 . . . . . . . 8  |-  u  e. 
_V
31 djuex 7020 . . . . . . . 8  |-  ( ( u  e.  _V  /\  1o  e.  om )  -> 
( u 1o )  e.  _V )
3230, 15, 31mp2an 424 . . . . . . 7  |-  ( u 1o )  e.  _V
33 2onn 6500 . . . . . . . 8  |-  2o  e.  om
34 breq2 3993 . . . . . . . . . . . 12  |-  ( x  =  2o  ->  (
y  ~<_  x  <->  y  ~<_  2o ) )
3534anbi2d 461 . . . . . . . . . . 11  |-  ( x  =  2o  ->  (
( E. z  z  e.  y  /\  y  ~<_  x )  <->  ( E. z  z  e.  y  /\  y  ~<_  2o )
) )
36 foeq2 5417 . . . . . . . . . . . 12  |-  ( x  =  2o  ->  (
f : x -onto-> y  <-> 
f : 2o -onto-> y
) )
3736exbidv 1818 . . . . . . . . . . 11  |-  ( x  =  2o  ->  ( E. f  f :
x -onto-> y  <->  E. f 
f : 2o -onto-> y
) )
3835, 37imbi12d 233 . . . . . . . . . 10  |-  ( x  =  2o  ->  (
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  <->  ( ( E. z  z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) ) )
3938albidv 1817 . . . . . . . . 9  |-  ( x  =  2o  ->  ( A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  <->  A. y
( ( E. z 
z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) ) )
4039spcgv 2817 . . . . . . . 8  |-  ( 2o  e.  om  ->  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  A. y
( ( E. z 
z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) ) )
4133, 40ax-mp 5 . . . . . . 7  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  A. y
( ( E. z 
z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) )
42 eleq2 2234 . . . . . . . . . . 11  |-  ( y  =  ( u 1o )  ->  ( z  e.  y  <->  z  e.  ( u 1o ) ) )
4342exbidv 1818 . . . . . . . . . 10  |-  ( y  =  ( u 1o )  ->  ( E. z 
z  e.  y  <->  E. z 
z  e.  ( u 1o ) ) )
44 breq1 3992 . . . . . . . . . 10  |-  ( y  =  ( u 1o )  ->  ( y  ~<_  2o  <->  ( u 1o )  ~<_  2o ) )
4543, 44anbi12d 470 . . . . . . . . 9  |-  ( y  =  ( u 1o )  ->  ( ( E. z  z  e.  y  /\  y  ~<_  2o )  <-> 
( E. z  z  e.  ( u 1o )  /\  ( u 1o )  ~<_  2o ) ) )
46 foeq3 5418 . . . . . . . . . 10  |-  ( y  =  ( u 1o )  ->  ( f : 2o -onto-> y  <->  f : 2o -onto-> ( u 1o ) ) )
4746exbidv 1818 . . . . . . . . 9  |-  ( y  =  ( u 1o )  ->  ( E. f 
f : 2o -onto-> y  <->  E. f  f : 2o -onto->
( u 1o )
) )
4845, 47imbi12d 233 . . . . . . . 8  |-  ( y  =  ( u 1o )  ->  ( ( ( E. z  z  e.  y  /\  y  ~<_  2o )  ->  E. f 
f : 2o -onto-> y
)  <->  ( ( E. z  z  e.  ( u 1o )  /\  (
u 1o )  ~<_  2o )  ->  E. f  f : 2o -onto-> ( u 1o ) ) ) )
4948spcgv 2817 . . . . . . 7  |-  ( ( u 1o )  e.  _V  ->  ( A. y ( ( E. z  z  e.  y  /\  y  ~<_  2o )  ->  E. f 
f : 2o -onto-> y
)  ->  ( ( E. z  z  e.  ( u 1o )  /\  ( u 1o )  ~<_  2o )  ->  E. f 
f : 2o -onto-> (
u 1o ) ) ) )
5032, 41, 49mpsyl 65 . . . . . 6  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  ( ( E. z  z  e.  ( u 1o )  /\  ( u 1o )  ~<_  2o )  ->  E. f 
f : 2o -onto-> (
u 1o ) ) )
519, 29, 50sylc 62 . . . . 5  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  E. f  f : 2o -onto-> ( u 1o ) )
52 simprl 526 . . . . . . . 8  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( (/)  e.  u  /\  ( f `  (/) )  =  ( (inl  |`  u
) `  (/) ) ) )  ->  (/)  e.  u
)
5352orcd 728 . . . . . . 7  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( (/)  e.  u  /\  ( f `  (/) )  =  ( (inl  |`  u
) `  (/) ) ) )  ->  ( (/)  e.  u  \/  -.  (/)  e.  u ) )
54 df-dc 830 . . . . . . 7  |-  (DECID  (/)  e.  u  <->  (
(/)  e.  u  \/  -.  (/)  e.  u ) )
5553, 54sylibr 133 . . . . . 6  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( (/)  e.  u  /\  ( f `  (/) )  =  ( (inl  |`  u
) `  (/) ) ) )  -> DECID  (/)  e.  u )
56 simprl 526 . . . . . . . . 9  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( (/)  e.  u  /\  ( f `  1o )  =  ( (inl  |`  u ) `  (/) ) ) )  ->  (/)  e.  u
)
5756orcd 728 . . . . . . . 8  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( (/)  e.  u  /\  ( f `  1o )  =  ( (inl  |`  u ) `  (/) ) ) )  ->  ( (/)  e.  u  \/  -.  (/)  e.  u ) )
5857, 54sylibr 133 . . . . . . 7  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( (/)  e.  u  /\  ( f `  1o )  =  ( (inl  |`  u ) `  (/) ) ) )  -> DECID  (/)  e.  u )
59 simp-4r 537 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  -> 
f : 2o -onto-> (
u 1o ) )
60 djulcl 7028 . . . . . . . . . . . . 13  |-  ( (/)  e.  u  ->  (inl `  (/) )  e.  ( u 1o ) )
6160adantl 275 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  -> 
(inl `  (/) )  e.  ( u 1o )
)
62 foelrn 5732 . . . . . . . . . . . 12  |-  ( ( f : 2o -onto-> (
u 1o )  /\  (inl `  (/) )  e.  (
u 1o ) )  ->  E. w  e.  2o  (inl `  (/) )  =  ( f `  w ) )
6359, 61, 62syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  ->  E. w  e.  2o  (inl `  (/) )  =  ( f `  w ) )
64 simprr 527 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
(inl `  (/) )  =  ( f `  w
) )
65 fvres 5520 . . . . . . . . . . . . . . . . 17  |-  ( (/)  e.  u  ->  ( (inl  |`  u ) `  (/) )  =  (inl `  (/) ) )
6665eqeq1d 2179 . . . . . . . . . . . . . . . 16  |-  ( (/)  e.  u  ->  ( ( (inl  |`  u ) `  (/) )  =  ( f `
 w )  <->  (inl `  (/) )  =  ( f `  w
) ) )
6766ad2antlr 486 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
( ( (inl  |`  u
) `  (/) )  =  ( f `  w
)  <->  (inl `  (/) )  =  ( f `  w
) ) )
6864, 67mpbird 166 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
( (inl  |`  u
) `  (/) )  =  ( f `  w
) )
6968adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  -> 
( (inl  |`  u
) `  (/) )  =  ( f `  w
) )
70 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  ->  w  =  (/) )
7170fveq2d 5500 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  -> 
( f `  w
)  =  ( f `
 (/) ) )
72 simp-5r 539 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  -> 
( f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
7369, 71, 723eqtrd 2207 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  -> 
( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
7468adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  ( (inl  |`  u
) `  (/) )  =  ( f `  w
) )
75 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  w  =  1o )
7675fveq2d 5500 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  ( f `  w
)  =  ( f `
 1o ) )
77 simp-4r 537 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  ( f `  1o )  =  ( (inr  |`  1o ) `  (/) ) )
7874, 76, 773eqtrd 2207 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  ( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
79 elpri 3606 . . . . . . . . . . . . . 14  |-  ( w  e.  { (/) ,  1o }  ->  ( w  =  (/)  \/  w  =  1o ) )
80 df2o3 6409 . . . . . . . . . . . . . 14  |-  2o  =  { (/) ,  1o }
8179, 80eleq2s 2265 . . . . . . . . . . . . 13  |-  ( w  e.  2o  ->  (
w  =  (/)  \/  w  =  1o ) )
8281ad2antrl 487 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
( w  =  (/)  \/  w  =  1o ) )
8373, 78, 82mpjaodan 793 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
8463, 83rexlimddv 2592 . . . . . . . . . 10  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  -> 
( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
85 0ex 4116 . . . . . . . . . . . . . 14  |-  (/)  e.  _V
86 djune 7055 . . . . . . . . . . . . . 14  |-  ( (
(/)  e.  _V  /\  (/)  e.  _V )  ->  (inl `  (/) )  =/=  (inr `  (/) ) )
8785, 85, 86mp2an 424 . . . . . . . . . . . . 13  |-  (inl `  (/) )  =/=  (inr `  (/) )
8887neii 2342 . . . . . . . . . . . 12  |-  -.  (inl `  (/) )  =  (inr `  (/) )
89 fvres 5520 . . . . . . . . . . . . . . 15  |-  ( (/)  e.  1o  ->  ( (inr  |`  1o ) `  (/) )  =  (inr `  (/) ) )
9024, 89ax-mp 5 . . . . . . . . . . . . . 14  |-  ( (inr  |`  1o ) `  (/) )  =  (inr `  (/) )
9190a1i 9 . . . . . . . . . . . . 13  |-  ( (/)  e.  u  ->  ( (inr  |`  1o ) `  (/) )  =  (inr `  (/) ) )
9265, 91eqeq12d 2185 . . . . . . . . . . . 12  |-  ( (/)  e.  u  ->  ( ( (inl  |`  u ) `  (/) )  =  ( (inr  |`  1o ) `  (/) )  <->  (inl `  (/) )  =  (inr `  (/) ) ) )
9388, 92mtbiri 670 . . . . . . . . . . 11  |-  ( (/)  e.  u  ->  -.  (
(inl  |`  u ) `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )
9493adantl 275 . . . . . . . . . 10  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  ->  -.  ( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
9584, 94pm2.65da 656 . . . . . . . . 9  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( f `  1o )  =  ( (inr  |`  1o ) `  (/) ) )  ->  -.  (/)  e.  u
)
9695olcd 729 . . . . . . . 8  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( f `  1o )  =  ( (inr  |`  1o ) `  (/) ) )  ->  ( (/)  e.  u  \/  -.  (/)  e.  u ) )
9796, 54sylibr 133 . . . . . . 7  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( f `  1o )  =  ( (inr  |`  1o ) `  (/) ) )  -> DECID  (/) 
e.  u )
98 simplr 525 . . . . . . . . . 10  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  u  C_  { (/) } )
9998, 13sseqtrrdi 3196 . . . . . . . . 9  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  u  C_  1o )
10099adantr 274 . . . . . . . 8  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  u  C_  1o )
101 fof 5420 . . . . . . . . . . 11  |-  ( f : 2o -onto-> ( u 1o )  ->  f : 2o --> ( u 1o ) )
102101adantl 275 . . . . . . . . . 10  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  f : 2o
--> ( u 1o )
)
103102adantr 274 . . . . . . . . 9  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  f : 2o --> ( u 1o ) )
104 1oex 6403 . . . . . . . . . . . 12  |-  1o  e.  _V
105104prid2 3690 . . . . . . . . . . 11  |-  1o  e.  {
(/) ,  1o }
106105, 80eleqtrri 2246 . . . . . . . . . 10  |-  1o  e.  2o
107106a1i 9 . . . . . . . . 9  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  1o  e.  2o )
108103, 107ffvelrnd 5632 . . . . . . . 8  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  (
f `  1o )  e.  ( u 1o )
)
109100, 108exmidfodomrlemreseldju 7177 . . . . . . 7  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  (
( (/)  e.  u  /\  ( f `  1o )  =  ( (inl  |`  u ) `  (/) ) )  \/  ( f `  1o )  =  (
(inr  |`  1o ) `  (/) ) ) )
11058, 97, 109mpjaodan 793 . . . . . 6  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  -> DECID  (/)  e.  u )
111 elelsuc 4394 . . . . . . . . . . 11  |-  ( (/)  e.  1o  ->  (/)  e.  suc  1o )
11224, 111ax-mp 5 . . . . . . . . . 10  |-  (/)  e.  suc  1o
113 df-2o 6396 . . . . . . . . . 10  |-  2o  =  suc  1o
114112, 113eleqtrri 2246 . . . . . . . . 9  |-  (/)  e.  2o
115114a1i 9 . . . . . . . 8  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  (/)  e.  2o )
116102, 115ffvelrnd 5632 . . . . . . 7  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  ( f `  (/) )  e.  ( u 1o ) )
11799, 116exmidfodomrlemreseldju 7177 . . . . . 6  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  ( ( (/) 
e.  u  /\  (
f `  (/) )  =  ( (inl  |`  u
) `  (/) ) )  \/  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) ) )
11855, 110, 117mpjaodan 793 . . . . 5  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  -> DECID  (/)  e.  u )
1197, 8, 51, 118exlimdd 1865 . . . 4  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  -> DECID  (/) 
e.  u )
120119ex 114 . . 3  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  ( u  C_ 
{ (/) }  -> DECID  (/)  e.  u ) )
121120alrimiv 1867 . 2  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  A. u
( u  C_  { (/) }  -> DECID  (/) 
e.  u ) )
122 df-exmid 4181 . 2  |-  (EXMID  <->  A. u
( u  C_  { (/) }  -> DECID  (/) 
e.  u ) )
123121, 122sylibr 133 1  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141    =/= wne 2340   E.wrex 2449   _Vcvv 2730    C_ wss 3121   (/)c0 3414   {csn 3583   {cpr 3584   class class class wbr 3989  EXMIDwem 4180   suc csuc 4350   omcom 4574    |` cres 4613   -->wf 5194   -onto->wfo 5196   ` cfv 5198   1oc1o 6388   2oc2o 6389    ~~ cen 6716    ~<_ cdom 6717   ⊔ cdju 7014  inlcinl 7022  inrcinr 7023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-exmid 4181  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-dom 6720  df-dju 7015  df-inl 7024  df-inr 7025  df-case 7061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator