ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemrALT Unicode version

Theorem exmidfodomrlemrALT 7265
Description: The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. An alternative proof of exmidfodomrlemr 7264. In particular, this proof uses eldju 7129 instead of djur 7130 and avoids djulclb 7116. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Jim Kingdon, 9-Jul-2022.)
Assertion
Ref Expression
exmidfodomrlemrALT  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  -> EXMID )
Distinct variable group:    x, f, y, z

Proof of Theorem exmidfodomrlemrALT
Dummy variables  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1539 . . . . . . . . 9  |-  F/ f ( E. z  z  e.  y  /\  y  ~<_  x )
2 nfe1 1507 . . . . . . . . 9  |-  F/ f E. f  f : x -onto-> y
31, 2nfim 1583 . . . . . . . 8  |-  F/ f ( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )
43nfal 1587 . . . . . . 7  |-  F/ f A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )
54nfal 1587 . . . . . 6  |-  F/ f A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )
6 nfv 1539 . . . . . 6  |-  F/ f  u  C_  { (/) }
75, 6nfan 1576 . . . . 5  |-  F/ f ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )
8 nfv 1539 . . . . 5  |-  F/ fDECID  (/)  e.  u
9 simpl 109 . . . . . 6  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y ) )
10 p0ex 4218 . . . . . . . . . . . 12  |-  { (/) }  e.  _V
11 ssdomg 6834 . . . . . . . . . . . 12  |-  ( {
(/) }  e.  _V  ->  ( u  C_  { (/) }  ->  u  ~<_  { (/) } ) )
1210, 11ax-mp 5 . . . . . . . . . . 11  |-  ( u 
C_  { (/) }  ->  u  ~<_  { (/) } )
13 df1o2 6484 . . . . . . . . . . 11  |-  1o  =  { (/) }
1412, 13breqtrrdi 4072 . . . . . . . . . 10  |-  ( u 
C_  { (/) }  ->  u  ~<_  1o )
15 1onn 6575 . . . . . . . . . . 11  |-  1o  e.  om
16 domrefg 6823 . . . . . . . . . . 11  |-  ( 1o  e.  om  ->  1o  ~<_  1o )
1715, 16ax-mp 5 . . . . . . . . . 10  |-  1o  ~<_  1o
18 djudom 7154 . . . . . . . . . 10  |-  ( ( u  ~<_  1o  /\  1o  ~<_  1o )  ->  ( u 1o )  ~<_  ( 1o 1o ) )
1914, 17, 18sylancl 413 . . . . . . . . 9  |-  ( u 
C_  { (/) }  ->  ( u 1o )  ~<_  ( 1o 1o ) )
20 dju1p1e2 7259 . . . . . . . . 9  |-  ( 1o 1o )  ~~  2o
21 domentr 6847 . . . . . . . . 9  |-  ( ( ( u 1o )  ~<_  ( 1o 1o )  /\  ( 1o 1o )  ~~  2o )  ->  ( u 1o )  ~<_  2o )
2219, 20, 21sylancl 413 . . . . . . . 8  |-  ( u 
C_  { (/) }  ->  ( u 1o )  ~<_  2o )
2322adantl 277 . . . . . . 7  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  ( u 1o )  ~<_  2o )
24 0lt1o 6495 . . . . . . . . 9  |-  (/)  e.  1o
25 djurcl 7113 . . . . . . . . 9  |-  ( (/)  e.  1o  ->  (inr `  (/) )  e.  ( u 1o )
)
2624, 25ax-mp 5 . . . . . . . 8  |-  (inr `  (/) )  e.  ( u 1o )
27 elex2 2776 . . . . . . . 8  |-  ( (inr
`  (/) )  e.  ( u 1o )  ->  E. z 
z  e.  ( u 1o ) )
2826, 27ax-mp 5 . . . . . . 7  |-  E. z 
z  e.  ( u 1o )
2923, 28jctil 312 . . . . . 6  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  ( E. z 
z  e.  ( u 1o )  /\  (
u 1o )  ~<_  2o ) )
30 vex 2763 . . . . . . . 8  |-  u  e. 
_V
31 djuex 7104 . . . . . . . 8  |-  ( ( u  e.  _V  /\  1o  e.  om )  -> 
( u 1o )  e.  _V )
3230, 15, 31mp2an 426 . . . . . . 7  |-  ( u 1o )  e.  _V
33 2onn 6576 . . . . . . . 8  |-  2o  e.  om
34 breq2 4034 . . . . . . . . . . . 12  |-  ( x  =  2o  ->  (
y  ~<_  x  <->  y  ~<_  2o ) )
3534anbi2d 464 . . . . . . . . . . 11  |-  ( x  =  2o  ->  (
( E. z  z  e.  y  /\  y  ~<_  x )  <->  ( E. z  z  e.  y  /\  y  ~<_  2o )
) )
36 foeq2 5474 . . . . . . . . . . . 12  |-  ( x  =  2o  ->  (
f : x -onto-> y  <-> 
f : 2o -onto-> y
) )
3736exbidv 1836 . . . . . . . . . . 11  |-  ( x  =  2o  ->  ( E. f  f :
x -onto-> y  <->  E. f 
f : 2o -onto-> y
) )
3835, 37imbi12d 234 . . . . . . . . . 10  |-  ( x  =  2o  ->  (
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  <->  ( ( E. z  z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) ) )
3938albidv 1835 . . . . . . . . 9  |-  ( x  =  2o  ->  ( A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  <->  A. y
( ( E. z 
z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) ) )
4039spcgv 2848 . . . . . . . 8  |-  ( 2o  e.  om  ->  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  A. y
( ( E. z 
z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) ) )
4133, 40ax-mp 5 . . . . . . 7  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  A. y
( ( E. z 
z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) )
42 eleq2 2257 . . . . . . . . . . 11  |-  ( y  =  ( u 1o )  ->  ( z  e.  y  <->  z  e.  ( u 1o ) ) )
4342exbidv 1836 . . . . . . . . . 10  |-  ( y  =  ( u 1o )  ->  ( E. z 
z  e.  y  <->  E. z 
z  e.  ( u 1o ) ) )
44 breq1 4033 . . . . . . . . . 10  |-  ( y  =  ( u 1o )  ->  ( y  ~<_  2o  <->  ( u 1o )  ~<_  2o ) )
4543, 44anbi12d 473 . . . . . . . . 9  |-  ( y  =  ( u 1o )  ->  ( ( E. z  z  e.  y  /\  y  ~<_  2o )  <-> 
( E. z  z  e.  ( u 1o )  /\  ( u 1o )  ~<_  2o ) ) )
46 foeq3 5475 . . . . . . . . . 10  |-  ( y  =  ( u 1o )  ->  ( f : 2o -onto-> y  <->  f : 2o -onto-> ( u 1o ) ) )
4746exbidv 1836 . . . . . . . . 9  |-  ( y  =  ( u 1o )  ->  ( E. f 
f : 2o -onto-> y  <->  E. f  f : 2o -onto->
( u 1o )
) )
4845, 47imbi12d 234 . . . . . . . 8  |-  ( y  =  ( u 1o )  ->  ( ( ( E. z  z  e.  y  /\  y  ~<_  2o )  ->  E. f 
f : 2o -onto-> y
)  <->  ( ( E. z  z  e.  ( u 1o )  /\  (
u 1o )  ~<_  2o )  ->  E. f  f : 2o -onto-> ( u 1o ) ) ) )
4948spcgv 2848 . . . . . . 7  |-  ( ( u 1o )  e.  _V  ->  ( A. y ( ( E. z  z  e.  y  /\  y  ~<_  2o )  ->  E. f 
f : 2o -onto-> y
)  ->  ( ( E. z  z  e.  ( u 1o )  /\  ( u 1o )  ~<_  2o )  ->  E. f 
f : 2o -onto-> (
u 1o ) ) ) )
5032, 41, 49mpsyl 65 . . . . . 6  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  ( ( E. z  z  e.  ( u 1o )  /\  ( u 1o )  ~<_  2o )  ->  E. f 
f : 2o -onto-> (
u 1o ) ) )
519, 29, 50sylc 62 . . . . 5  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  E. f  f : 2o -onto-> ( u 1o ) )
52 simprl 529 . . . . . . . 8  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( (/)  e.  u  /\  ( f `  (/) )  =  ( (inl  |`  u
) `  (/) ) ) )  ->  (/)  e.  u
)
5352orcd 734 . . . . . . 7  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( (/)  e.  u  /\  ( f `  (/) )  =  ( (inl  |`  u
) `  (/) ) ) )  ->  ( (/)  e.  u  \/  -.  (/)  e.  u ) )
54 df-dc 836 . . . . . . 7  |-  (DECID  (/)  e.  u  <->  (
(/)  e.  u  \/  -.  (/)  e.  u ) )
5553, 54sylibr 134 . . . . . 6  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( (/)  e.  u  /\  ( f `  (/) )  =  ( (inl  |`  u
) `  (/) ) ) )  -> DECID  (/)  e.  u )
56 simprl 529 . . . . . . . . 9  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( (/)  e.  u  /\  ( f `  1o )  =  ( (inl  |`  u ) `  (/) ) ) )  ->  (/)  e.  u
)
5756orcd 734 . . . . . . . 8  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( (/)  e.  u  /\  ( f `  1o )  =  ( (inl  |`  u ) `  (/) ) ) )  ->  ( (/)  e.  u  \/  -.  (/)  e.  u ) )
5857, 54sylibr 134 . . . . . . 7  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( (/)  e.  u  /\  ( f `  1o )  =  ( (inl  |`  u ) `  (/) ) ) )  -> DECID  (/)  e.  u )
59 simp-4r 542 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  -> 
f : 2o -onto-> (
u 1o ) )
60 djulcl 7112 . . . . . . . . . . . . 13  |-  ( (/)  e.  u  ->  (inl `  (/) )  e.  ( u 1o ) )
6160adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  -> 
(inl `  (/) )  e.  ( u 1o )
)
62 foelrn 5796 . . . . . . . . . . . 12  |-  ( ( f : 2o -onto-> (
u 1o )  /\  (inl `  (/) )  e.  (
u 1o ) )  ->  E. w  e.  2o  (inl `  (/) )  =  ( f `  w ) )
6359, 61, 62syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  ->  E. w  e.  2o  (inl `  (/) )  =  ( f `  w ) )
64 simprr 531 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
(inl `  (/) )  =  ( f `  w
) )
65 fvres 5579 . . . . . . . . . . . . . . . . 17  |-  ( (/)  e.  u  ->  ( (inl  |`  u ) `  (/) )  =  (inl `  (/) ) )
6665eqeq1d 2202 . . . . . . . . . . . . . . . 16  |-  ( (/)  e.  u  ->  ( ( (inl  |`  u ) `  (/) )  =  ( f `
 w )  <->  (inl `  (/) )  =  ( f `  w
) ) )
6766ad2antlr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
( ( (inl  |`  u
) `  (/) )  =  ( f `  w
)  <->  (inl `  (/) )  =  ( f `  w
) ) )
6864, 67mpbird 167 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
( (inl  |`  u
) `  (/) )  =  ( f `  w
) )
6968adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  -> 
( (inl  |`  u
) `  (/) )  =  ( f `  w
) )
70 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  ->  w  =  (/) )
7170fveq2d 5559 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  -> 
( f `  w
)  =  ( f `
 (/) ) )
72 simp-5r 544 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  -> 
( f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
7369, 71, 723eqtrd 2230 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  -> 
( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
7468adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  ( (inl  |`  u
) `  (/) )  =  ( f `  w
) )
75 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  w  =  1o )
7675fveq2d 5559 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  ( f `  w
)  =  ( f `
 1o ) )
77 simp-4r 542 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  ( f `  1o )  =  ( (inr  |`  1o ) `  (/) ) )
7874, 76, 773eqtrd 2230 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  ( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
79 elpri 3642 . . . . . . . . . . . . . 14  |-  ( w  e.  { (/) ,  1o }  ->  ( w  =  (/)  \/  w  =  1o ) )
80 df2o3 6485 . . . . . . . . . . . . . 14  |-  2o  =  { (/) ,  1o }
8179, 80eleq2s 2288 . . . . . . . . . . . . 13  |-  ( w  e.  2o  ->  (
w  =  (/)  \/  w  =  1o ) )
8281ad2antrl 490 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
( w  =  (/)  \/  w  =  1o ) )
8373, 78, 82mpjaodan 799 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
8463, 83rexlimddv 2616 . . . . . . . . . 10  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  -> 
( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
85 0ex 4157 . . . . . . . . . . . . . 14  |-  (/)  e.  _V
86 djune 7139 . . . . . . . . . . . . . 14  |-  ( (
(/)  e.  _V  /\  (/)  e.  _V )  ->  (inl `  (/) )  =/=  (inr `  (/) ) )
8785, 85, 86mp2an 426 . . . . . . . . . . . . 13  |-  (inl `  (/) )  =/=  (inr `  (/) )
8887neii 2366 . . . . . . . . . . . 12  |-  -.  (inl `  (/) )  =  (inr `  (/) )
89 fvres 5579 . . . . . . . . . . . . . . 15  |-  ( (/)  e.  1o  ->  ( (inr  |`  1o ) `  (/) )  =  (inr `  (/) ) )
9024, 89ax-mp 5 . . . . . . . . . . . . . 14  |-  ( (inr  |`  1o ) `  (/) )  =  (inr `  (/) )
9190a1i 9 . . . . . . . . . . . . 13  |-  ( (/)  e.  u  ->  ( (inr  |`  1o ) `  (/) )  =  (inr `  (/) ) )
9265, 91eqeq12d 2208 . . . . . . . . . . . 12  |-  ( (/)  e.  u  ->  ( ( (inl  |`  u ) `  (/) )  =  ( (inr  |`  1o ) `  (/) )  <->  (inl `  (/) )  =  (inr `  (/) ) ) )
9388, 92mtbiri 676 . . . . . . . . . . 11  |-  ( (/)  e.  u  ->  -.  (
(inl  |`  u ) `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )
9493adantl 277 . . . . . . . . . 10  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  ->  -.  ( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
9584, 94pm2.65da 662 . . . . . . . . 9  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( f `  1o )  =  ( (inr  |`  1o ) `  (/) ) )  ->  -.  (/)  e.  u
)
9695olcd 735 . . . . . . . 8  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( f `  1o )  =  ( (inr  |`  1o ) `  (/) ) )  ->  ( (/)  e.  u  \/  -.  (/)  e.  u ) )
9796, 54sylibr 134 . . . . . . 7  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( f `  1o )  =  ( (inr  |`  1o ) `  (/) ) )  -> DECID  (/) 
e.  u )
98 simplr 528 . . . . . . . . . 10  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  u  C_  { (/) } )
9998, 13sseqtrrdi 3229 . . . . . . . . 9  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  u  C_  1o )
10099adantr 276 . . . . . . . 8  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  u  C_  1o )
101 fof 5477 . . . . . . . . . . 11  |-  ( f : 2o -onto-> ( u 1o )  ->  f : 2o --> ( u 1o ) )
102101adantl 277 . . . . . . . . . 10  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  f : 2o
--> ( u 1o )
)
103102adantr 276 . . . . . . . . 9  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  f : 2o --> ( u 1o ) )
104 1oex 6479 . . . . . . . . . . . 12  |-  1o  e.  _V
105104prid2 3726 . . . . . . . . . . 11  |-  1o  e.  {
(/) ,  1o }
106105, 80eleqtrri 2269 . . . . . . . . . 10  |-  1o  e.  2o
107106a1i 9 . . . . . . . . 9  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  1o  e.  2o )
108103, 107ffvelcdmd 5695 . . . . . . . 8  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  (
f `  1o )  e.  ( u 1o )
)
109100, 108exmidfodomrlemreseldju 7262 . . . . . . 7  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  (
( (/)  e.  u  /\  ( f `  1o )  =  ( (inl  |`  u ) `  (/) ) )  \/  ( f `  1o )  =  (
(inr  |`  1o ) `  (/) ) ) )
11058, 97, 109mpjaodan 799 . . . . . 6  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  -> DECID  (/)  e.  u )
111 elelsuc 4441 . . . . . . . . . . 11  |-  ( (/)  e.  1o  ->  (/)  e.  suc  1o )
11224, 111ax-mp 5 . . . . . . . . . 10  |-  (/)  e.  suc  1o
113 df-2o 6472 . . . . . . . . . 10  |-  2o  =  suc  1o
114112, 113eleqtrri 2269 . . . . . . . . 9  |-  (/)  e.  2o
115114a1i 9 . . . . . . . 8  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  (/)  e.  2o )
116102, 115ffvelcdmd 5695 . . . . . . 7  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  ( f `  (/) )  e.  ( u 1o ) )
11799, 116exmidfodomrlemreseldju 7262 . . . . . 6  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  ( ( (/) 
e.  u  /\  (
f `  (/) )  =  ( (inl  |`  u
) `  (/) ) )  \/  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) ) )
11855, 110, 117mpjaodan 799 . . . . 5  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  -> DECID  (/)  e.  u )
1197, 8, 51, 118exlimdd 1883 . . . 4  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  -> DECID  (/) 
e.  u )
120119ex 115 . . 3  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  ( u  C_ 
{ (/) }  -> DECID  (/)  e.  u ) )
121120alrimiv 1885 . 2  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  A. u
( u  C_  { (/) }  -> DECID  (/) 
e.  u ) )
122 df-exmid 4225 . 2  |-  (EXMID  <->  A. u
( u  C_  { (/) }  -> DECID  (/) 
e.  u ) )
123121, 122sylibr 134 1  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835   A.wal 1362    = wceq 1364   E.wex 1503    e. wcel 2164    =/= wne 2364   E.wrex 2473   _Vcvv 2760    C_ wss 3154   (/)c0 3447   {csn 3619   {cpr 3620   class class class wbr 4030  EXMIDwem 4224   suc csuc 4397   omcom 4623    |` cres 4662   -->wf 5251   -onto->wfo 5253   ` cfv 5255   1oc1o 6464   2oc2o 6465    ~~ cen 6794    ~<_ cdom 6795   ⊔ cdju 7098  inlcinl 7106  inrcinr 7107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-exmid 4225  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-2o 6472  df-er 6589  df-en 6797  df-dom 6798  df-dju 7099  df-inl 7108  df-inr 7109  df-case 7145
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator