ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemrALT Unicode version

Theorem exmidfodomrlemrALT 7075
Description: The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. An alternative proof of exmidfodomrlemr 7074. In particular, this proof uses eldju 6960 instead of djur 6961 and avoids djulclb 6947. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Jim Kingdon, 9-Jul-2022.)
Assertion
Ref Expression
exmidfodomrlemrALT  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  -> EXMID )
Distinct variable group:    x, f, y, z

Proof of Theorem exmidfodomrlemrALT
Dummy variables  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1509 . . . . . . . . 9  |-  F/ f ( E. z  z  e.  y  /\  y  ~<_  x )
2 nfe1 1473 . . . . . . . . 9  |-  F/ f E. f  f : x -onto-> y
31, 2nfim 1552 . . . . . . . 8  |-  F/ f ( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )
43nfal 1556 . . . . . . 7  |-  F/ f A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )
54nfal 1556 . . . . . 6  |-  F/ f A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )
6 nfv 1509 . . . . . 6  |-  F/ f  u  C_  { (/) }
75, 6nfan 1545 . . . . 5  |-  F/ f ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )
8 nfv 1509 . . . . 5  |-  F/ fDECID  (/)  e.  u
9 simpl 108 . . . . . 6  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y ) )
10 p0ex 4119 . . . . . . . . . . . 12  |-  { (/) }  e.  _V
11 ssdomg 6679 . . . . . . . . . . . 12  |-  ( {
(/) }  e.  _V  ->  ( u  C_  { (/) }  ->  u  ~<_  { (/) } ) )
1210, 11ax-mp 5 . . . . . . . . . . 11  |-  ( u 
C_  { (/) }  ->  u  ~<_  { (/) } )
13 df1o2 6333 . . . . . . . . . . 11  |-  1o  =  { (/) }
1412, 13breqtrrdi 3977 . . . . . . . . . 10  |-  ( u 
C_  { (/) }  ->  u  ~<_  1o )
15 1onn 6423 . . . . . . . . . . 11  |-  1o  e.  om
16 domrefg 6668 . . . . . . . . . . 11  |-  ( 1o  e.  om  ->  1o  ~<_  1o )
1715, 16ax-mp 5 . . . . . . . . . 10  |-  1o  ~<_  1o
18 djudom 6985 . . . . . . . . . 10  |-  ( ( u  ~<_  1o  /\  1o  ~<_  1o )  ->  ( u 1o )  ~<_  ( 1o 1o ) )
1914, 17, 18sylancl 410 . . . . . . . . 9  |-  ( u 
C_  { (/) }  ->  ( u 1o )  ~<_  ( 1o 1o ) )
20 dju1p1e2 7069 . . . . . . . . 9  |-  ( 1o 1o )  ~~  2o
21 domentr 6692 . . . . . . . . 9  |-  ( ( ( u 1o )  ~<_  ( 1o 1o )  /\  ( 1o 1o )  ~~  2o )  ->  ( u 1o )  ~<_  2o )
2219, 20, 21sylancl 410 . . . . . . . 8  |-  ( u 
C_  { (/) }  ->  ( u 1o )  ~<_  2o )
2322adantl 275 . . . . . . 7  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  ( u 1o )  ~<_  2o )
24 0lt1o 6344 . . . . . . . . 9  |-  (/)  e.  1o
25 djurcl 6944 . . . . . . . . 9  |-  ( (/)  e.  1o  ->  (inr `  (/) )  e.  ( u 1o )
)
2624, 25ax-mp 5 . . . . . . . 8  |-  (inr `  (/) )  e.  ( u 1o )
27 elex2 2705 . . . . . . . 8  |-  ( (inr
`  (/) )  e.  ( u 1o )  ->  E. z 
z  e.  ( u 1o ) )
2826, 27ax-mp 5 . . . . . . 7  |-  E. z 
z  e.  ( u 1o )
2923, 28jctil 310 . . . . . 6  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  ( E. z 
z  e.  ( u 1o )  /\  (
u 1o )  ~<_  2o ) )
30 vex 2692 . . . . . . . 8  |-  u  e. 
_V
31 djuex 6935 . . . . . . . 8  |-  ( ( u  e.  _V  /\  1o  e.  om )  -> 
( u 1o )  e.  _V )
3230, 15, 31mp2an 423 . . . . . . 7  |-  ( u 1o )  e.  _V
33 2onn 6424 . . . . . . . 8  |-  2o  e.  om
34 breq2 3940 . . . . . . . . . . . 12  |-  ( x  =  2o  ->  (
y  ~<_  x  <->  y  ~<_  2o ) )
3534anbi2d 460 . . . . . . . . . . 11  |-  ( x  =  2o  ->  (
( E. z  z  e.  y  /\  y  ~<_  x )  <->  ( E. z  z  e.  y  /\  y  ~<_  2o )
) )
36 foeq2 5349 . . . . . . . . . . . 12  |-  ( x  =  2o  ->  (
f : x -onto-> y  <-> 
f : 2o -onto-> y
) )
3736exbidv 1798 . . . . . . . . . . 11  |-  ( x  =  2o  ->  ( E. f  f :
x -onto-> y  <->  E. f 
f : 2o -onto-> y
) )
3835, 37imbi12d 233 . . . . . . . . . 10  |-  ( x  =  2o  ->  (
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  <->  ( ( E. z  z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) ) )
3938albidv 1797 . . . . . . . . 9  |-  ( x  =  2o  ->  ( A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  <->  A. y
( ( E. z 
z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) ) )
4039spcgv 2776 . . . . . . . 8  |-  ( 2o  e.  om  ->  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  A. y
( ( E. z 
z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) ) )
4133, 40ax-mp 5 . . . . . . 7  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  A. y
( ( E. z 
z  e.  y  /\  y  ~<_  2o )  ->  E. f  f : 2o -onto-> y ) )
42 eleq2 2204 . . . . . . . . . . 11  |-  ( y  =  ( u 1o )  ->  ( z  e.  y  <->  z  e.  ( u 1o ) ) )
4342exbidv 1798 . . . . . . . . . 10  |-  ( y  =  ( u 1o )  ->  ( E. z 
z  e.  y  <->  E. z 
z  e.  ( u 1o ) ) )
44 breq1 3939 . . . . . . . . . 10  |-  ( y  =  ( u 1o )  ->  ( y  ~<_  2o  <->  ( u 1o )  ~<_  2o ) )
4543, 44anbi12d 465 . . . . . . . . 9  |-  ( y  =  ( u 1o )  ->  ( ( E. z  z  e.  y  /\  y  ~<_  2o )  <-> 
( E. z  z  e.  ( u 1o )  /\  ( u 1o )  ~<_  2o ) ) )
46 foeq3 5350 . . . . . . . . . 10  |-  ( y  =  ( u 1o )  ->  ( f : 2o -onto-> y  <->  f : 2o -onto-> ( u 1o ) ) )
4746exbidv 1798 . . . . . . . . 9  |-  ( y  =  ( u 1o )  ->  ( E. f 
f : 2o -onto-> y  <->  E. f  f : 2o -onto->
( u 1o )
) )
4845, 47imbi12d 233 . . . . . . . 8  |-  ( y  =  ( u 1o )  ->  ( ( ( E. z  z  e.  y  /\  y  ~<_  2o )  ->  E. f 
f : 2o -onto-> y
)  <->  ( ( E. z  z  e.  ( u 1o )  /\  (
u 1o )  ~<_  2o )  ->  E. f  f : 2o -onto-> ( u 1o ) ) ) )
4948spcgv 2776 . . . . . . 7  |-  ( ( u 1o )  e.  _V  ->  ( A. y ( ( E. z  z  e.  y  /\  y  ~<_  2o )  ->  E. f 
f : 2o -onto-> y
)  ->  ( ( E. z  z  e.  ( u 1o )  /\  ( u 1o )  ~<_  2o )  ->  E. f 
f : 2o -onto-> (
u 1o ) ) ) )
5032, 41, 49mpsyl 65 . . . . . 6  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  ( ( E. z  z  e.  ( u 1o )  /\  ( u 1o )  ~<_  2o )  ->  E. f 
f : 2o -onto-> (
u 1o ) ) )
519, 29, 50sylc 62 . . . . 5  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  ->  E. f  f : 2o -onto-> ( u 1o ) )
52 simprl 521 . . . . . . . 8  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( (/)  e.  u  /\  ( f `  (/) )  =  ( (inl  |`  u
) `  (/) ) ) )  ->  (/)  e.  u
)
5352orcd 723 . . . . . . 7  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( (/)  e.  u  /\  ( f `  (/) )  =  ( (inl  |`  u
) `  (/) ) ) )  ->  ( (/)  e.  u  \/  -.  (/)  e.  u ) )
54 df-dc 821 . . . . . . 7  |-  (DECID  (/)  e.  u  <->  (
(/)  e.  u  \/  -.  (/)  e.  u ) )
5553, 54sylibr 133 . . . . . 6  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( (/)  e.  u  /\  ( f `  (/) )  =  ( (inl  |`  u
) `  (/) ) ) )  -> DECID  (/)  e.  u )
56 simprl 521 . . . . . . . . 9  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( (/)  e.  u  /\  ( f `  1o )  =  ( (inl  |`  u ) `  (/) ) ) )  ->  (/)  e.  u
)
5756orcd 723 . . . . . . . 8  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( (/)  e.  u  /\  ( f `  1o )  =  ( (inl  |`  u ) `  (/) ) ) )  ->  ( (/)  e.  u  \/  -.  (/)  e.  u ) )
5857, 54sylibr 133 . . . . . . 7  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( (/)  e.  u  /\  ( f `  1o )  =  ( (inl  |`  u ) `  (/) ) ) )  -> DECID  (/)  e.  u )
59 simp-4r 532 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  -> 
f : 2o -onto-> (
u 1o ) )
60 djulcl 6943 . . . . . . . . . . . . 13  |-  ( (/)  e.  u  ->  (inl `  (/) )  e.  ( u 1o ) )
6160adantl 275 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  -> 
(inl `  (/) )  e.  ( u 1o )
)
62 foelrn 5661 . . . . . . . . . . . 12  |-  ( ( f : 2o -onto-> (
u 1o )  /\  (inl `  (/) )  e.  (
u 1o ) )  ->  E. w  e.  2o  (inl `  (/) )  =  ( f `  w ) )
6359, 61, 62syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  ->  E. w  e.  2o  (inl `  (/) )  =  ( f `  w ) )
64 simprr 522 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
(inl `  (/) )  =  ( f `  w
) )
65 fvres 5452 . . . . . . . . . . . . . . . . 17  |-  ( (/)  e.  u  ->  ( (inl  |`  u ) `  (/) )  =  (inl `  (/) ) )
6665eqeq1d 2149 . . . . . . . . . . . . . . . 16  |-  ( (/)  e.  u  ->  ( ( (inl  |`  u ) `  (/) )  =  ( f `
 w )  <->  (inl `  (/) )  =  ( f `  w
) ) )
6766ad2antlr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
( ( (inl  |`  u
) `  (/) )  =  ( f `  w
)  <->  (inl `  (/) )  =  ( f `  w
) ) )
6864, 67mpbird 166 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
( (inl  |`  u
) `  (/) )  =  ( f `  w
) )
6968adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  -> 
( (inl  |`  u
) `  (/) )  =  ( f `  w
) )
70 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  ->  w  =  (/) )
7170fveq2d 5432 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  -> 
( f `  w
)  =  ( f `
 (/) ) )
72 simp-5r 534 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  -> 
( f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
7369, 71, 723eqtrd 2177 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  (/) )  -> 
( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
7468adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  ( (inl  |`  u
) `  (/) )  =  ( f `  w
) )
75 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  w  =  1o )
7675fveq2d 5432 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  ( f `  w
)  =  ( f `
 1o ) )
77 simp-4r 532 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  ( f `  1o )  =  ( (inr  |`  1o ) `  (/) ) )
7874, 76, 773eqtrd 2177 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  /\  w  =  1o )  ->  ( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
79 elpri 3554 . . . . . . . . . . . . . 14  |-  ( w  e.  { (/) ,  1o }  ->  ( w  =  (/)  \/  w  =  1o ) )
80 df2o3 6334 . . . . . . . . . . . . . 14  |-  2o  =  { (/) ,  1o }
8179, 80eleq2s 2235 . . . . . . . . . . . . 13  |-  ( w  e.  2o  ->  (
w  =  (/)  \/  w  =  1o ) )
8281ad2antrl 482 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
( w  =  (/)  \/  w  =  1o ) )
8373, 78, 82mpjaodan 788 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  /\  ( w  e.  2o  /\  (inl `  (/) )  =  ( f `  w
) ) )  -> 
( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
8463, 83rexlimddv 2557 . . . . . . . . . 10  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  -> 
( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
85 0ex 4062 . . . . . . . . . . . . . 14  |-  (/)  e.  _V
86 djune 6970 . . . . . . . . . . . . . 14  |-  ( (
(/)  e.  _V  /\  (/)  e.  _V )  ->  (inl `  (/) )  =/=  (inr `  (/) ) )
8785, 85, 86mp2an 423 . . . . . . . . . . . . 13  |-  (inl `  (/) )  =/=  (inr `  (/) )
8887neii 2311 . . . . . . . . . . . 12  |-  -.  (inl `  (/) )  =  (inr `  (/) )
89 fvres 5452 . . . . . . . . . . . . . . 15  |-  ( (/)  e.  1o  ->  ( (inr  |`  1o ) `  (/) )  =  (inr `  (/) ) )
9024, 89ax-mp 5 . . . . . . . . . . . . . 14  |-  ( (inr  |`  1o ) `  (/) )  =  (inr `  (/) )
9190a1i 9 . . . . . . . . . . . . 13  |-  ( (/)  e.  u  ->  ( (inr  |`  1o ) `  (/) )  =  (inr `  (/) ) )
9265, 91eqeq12d 2155 . . . . . . . . . . . 12  |-  ( (/)  e.  u  ->  ( ( (inl  |`  u ) `  (/) )  =  ( (inr  |`  1o ) `  (/) )  <->  (inl `  (/) )  =  (inr `  (/) ) ) )
9388, 92mtbiri 665 . . . . . . . . . . 11  |-  ( (/)  e.  u  ->  -.  (
(inl  |`  u ) `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )
9493adantl 275 . . . . . . . . . 10  |-  ( ( ( ( ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  /\  (
f `  1o )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  (/) 
e.  u )  ->  -.  ( (inl  |`  u
) `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )
9584, 94pm2.65da 651 . . . . . . . . 9  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( f `  1o )  =  ( (inr  |`  1o ) `  (/) ) )  ->  -.  (/)  e.  u
)
9695olcd 724 . . . . . . . 8  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( f `  1o )  =  ( (inr  |`  1o ) `  (/) ) )  ->  ( (/)  e.  u  \/  -.  (/)  e.  u ) )
9796, 54sylibr 133 . . . . . . 7  |-  ( ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  /\  u  C_  {
(/) } )  /\  f : 2o -onto-> ( u 1o ) )  /\  (
f `  (/) )  =  ( (inr  |`  1o ) `
 (/) ) )  /\  ( f `  1o )  =  ( (inr  |`  1o ) `  (/) ) )  -> DECID  (/) 
e.  u )
98 simplr 520 . . . . . . . . . 10  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  u  C_  { (/) } )
9998, 13sseqtrrdi 3150 . . . . . . . . 9  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  u  C_  1o )
10099adantr 274 . . . . . . . 8  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  u  C_  1o )
101 fof 5352 . . . . . . . . . . 11  |-  ( f : 2o -onto-> ( u 1o )  ->  f : 2o --> ( u 1o ) )
102101adantl 275 . . . . . . . . . 10  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  f : 2o
--> ( u 1o )
)
103102adantr 274 . . . . . . . . 9  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  f : 2o --> ( u 1o ) )
104 1oex 6328 . . . . . . . . . . . 12  |-  1o  e.  _V
105104prid2 3637 . . . . . . . . . . 11  |-  1o  e.  {
(/) ,  1o }
106105, 80eleqtrri 2216 . . . . . . . . . 10  |-  1o  e.  2o
107106a1i 9 . . . . . . . . 9  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  1o  e.  2o )
108103, 107ffvelrnd 5563 . . . . . . . 8  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  (
f `  1o )  e.  ( u 1o )
)
109100, 108exmidfodomrlemreseldju 7072 . . . . . . 7  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  ->  (
( (/)  e.  u  /\  ( f `  1o )  =  ( (inl  |`  u ) `  (/) ) )  \/  ( f `  1o )  =  (
(inr  |`  1o ) `  (/) ) ) )
11058, 97, 109mpjaodan 788 . . . . . 6  |-  ( ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  /\  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) )  -> DECID  (/)  e.  u )
111 elelsuc 4338 . . . . . . . . . . 11  |-  ( (/)  e.  1o  ->  (/)  e.  suc  1o )
11224, 111ax-mp 5 . . . . . . . . . 10  |-  (/)  e.  suc  1o
113 df-2o 6321 . . . . . . . . . 10  |-  2o  =  suc  1o
114112, 113eleqtrri 2216 . . . . . . . . 9  |-  (/)  e.  2o
115114a1i 9 . . . . . . . 8  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  (/)  e.  2o )
116102, 115ffvelrnd 5563 . . . . . . 7  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  ( f `  (/) )  e.  ( u 1o ) )
11799, 116exmidfodomrlemreseldju 7072 . . . . . 6  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  ->  ( ( (/) 
e.  u  /\  (
f `  (/) )  =  ( (inl  |`  u
) `  (/) ) )  \/  ( f `  (/) )  =  ( (inr  |`  1o ) `  (/) ) ) )
11855, 110, 117mpjaodan 788 . . . . 5  |-  ( ( ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  /\  u  C_  { (/) } )  /\  f : 2o -onto->
( u 1o )
)  -> DECID  (/)  e.  u )
1197, 8, 51, 118exlimdd 1845 . . . 4  |-  ( ( A. x A. y
( ( E. z 
z  e.  y  /\  y  ~<_  x )  ->  E. f  f :
x -onto-> y )  /\  u  C_  { (/) } )  -> DECID  (/) 
e.  u )
120119ex 114 . . 3  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  ( u  C_ 
{ (/) }  -> DECID  (/)  e.  u ) )
121120alrimiv 1847 . 2  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  ->  A. u
( u  C_  { (/) }  -> DECID  (/) 
e.  u ) )
122 df-exmid 4126 . 2  |-  (EXMID  <->  A. u
( u  C_  { (/) }  -> DECID  (/) 
e.  u ) )
123121, 122sylibr 133 1  |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y )  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820   A.wal 1330    = wceq 1332   E.wex 1469    e. wcel 1481    =/= wne 2309   E.wrex 2418   _Vcvv 2689    C_ wss 3075   (/)c0 3367   {csn 3531   {cpr 3532   class class class wbr 3936  EXMIDwem 4125   suc csuc 4294   omcom 4511    |` cres 4548   -->wf 5126   -onto->wfo 5128   ` cfv 5130   1oc1o 6313   2oc2o 6314    ~~ cen 6639    ~<_ cdom 6640   ⊔ cdju 6929  inlcinl 6937  inrcinr 6938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-exmid 4126  df-id 4222  df-iord 4295  df-on 4297  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-1st 6045  df-2nd 6046  df-1o 6320  df-2o 6321  df-er 6436  df-en 6642  df-dom 6643  df-dju 6930  df-inl 6939  df-inr 6940  df-case 6976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator