ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptap Unicode version

Theorem aptap 8609
Description: Complex apartness (as defined at df-ap 8541) is a tight apartness (as defined at df-tap 7251). (Contributed by Jim Kingdon, 16-Feb-2025.)
Assertion
Ref Expression
aptap  |- # TAp  CC

Proof of Theorem aptap
Dummy variables  q  p  r  s  t  u  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2184 . . . . . . . . . 10  |-  ( u  =  ( 1st `  t
)  ->  ( u  =  ( p  +  ( _i  x.  q
) )  <->  ( 1st `  t )  =  ( p  +  ( _i  x.  q ) ) ) )
21anbi1d 465 . . . . . . . . 9  |-  ( u  =  ( 1st `  t
)  ->  ( (
u  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) )  <-> 
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) ) ) )
32anbi1d 465 . . . . . . . 8  |-  ( u  =  ( 1st `  t
)  ->  ( (
( u  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) )  /\  ( p #  r  \/  q #  s ) )  <-> 
( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) )  /\  ( p #  r  \/  q #  s ) ) ) )
432rexbidv 2502 . . . . . . 7  |-  ( u  =  ( 1st `  t
)  ->  ( E. r  e.  RR  E. s  e.  RR  ( ( u  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) )  <->  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) ) )
542rexbidv 2502 . . . . . 6  |-  ( u  =  ( 1st `  t
)  ->  ( E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( u  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) )  <->  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) ) )
6 eqeq1 2184 . . . . . . . . . 10  |-  ( v  =  ( 2nd `  t
)  ->  ( v  =  ( r  +  ( _i  x.  s
) )  <->  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) ) )
76anbi2d 464 . . . . . . . . 9  |-  ( v  =  ( 2nd `  t
)  ->  ( (
( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) )  <-> 
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) ) ) )
87anbi1d 465 . . . . . . . 8  |-  ( v  =  ( 2nd `  t
)  ->  ( (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) )  /\  ( p #  r  \/  q #  s ) )  <->  ( (
( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) ) )
982rexbidv 2502 . . . . . . 7  |-  ( v  =  ( 2nd `  t
)  ->  ( E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) )  <->  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) ) ) )
1092rexbidv 2502 . . . . . 6  |-  ( v  =  ( 2nd `  t
)  ->  ( E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) )  <->  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) ) ) )
115, 10elopabi 6198 . . . . 5  |-  ( t  e.  { <. u ,  v >.  |  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( u  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) }  ->  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) ) )
12 df-ap 8541 . . . . 5  |- #  =  { <. u ,  v >.  |  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( u  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) }
1311, 12eleq2s 2272 . . . 4  |-  ( t  e. #  ->  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) ) )
1412relopabi 4754 . . . . . . . . . 10  |-  Rel #
15 simp-5l 543 . . . . . . . . . 10  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
t  e. #  )
16 1st2nd 6184 . . . . . . . . . 10  |-  ( ( Rel #  /\  t  e. #  )  ->  t  =  <. ( 1st `  t ) ,  ( 2nd `  t
) >. )
1714, 15, 16sylancr 414 . . . . . . . . 9  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
t  =  <. ( 1st `  t ) ,  ( 2nd `  t
) >. )
18 simprll 537 . . . . . . . . . . 11  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( 1st `  t
)  =  ( p  +  ( _i  x.  q ) ) )
19 simp-5r 544 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  ->  p  e.  RR )
2019recnd 7988 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  ->  p  e.  CC )
21 ax-icn 7908 . . . . . . . . . . . . . 14  |-  _i  e.  CC
2221a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  ->  _i  e.  CC )
23 simp-4r 542 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
q  e.  RR )
2423recnd 7988 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
q  e.  CC )
2522, 24mulcld 7980 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( _i  x.  q
)  e.  CC )
2620, 25addcld 7979 . . . . . . . . . . 11  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( p  +  ( _i  x.  q ) )  e.  CC )
2718, 26eqeltrd 2254 . . . . . . . . . 10  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( 1st `  t
)  e.  CC )
28 simprlr 538 . . . . . . . . . . 11  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( 2nd `  t
)  =  ( r  +  ( _i  x.  s ) ) )
29 simpllr 534 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
r  e.  RR )
3029recnd 7988 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
r  e.  CC )
31 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
s  e.  RR )
3231recnd 7988 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
s  e.  CC )
3322, 32mulcld 7980 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( _i  x.  s
)  e.  CC )
3430, 33addcld 7979 . . . . . . . . . . 11  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( r  +  ( _i  x.  s ) )  e.  CC )
3528, 34eqeltrd 2254 . . . . . . . . . 10  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( 2nd `  t
)  e.  CC )
3627, 35jca 306 . . . . . . . . 9  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( ( 1st `  t
)  e.  CC  /\  ( 2nd `  t )  e.  CC ) )
37 elxp6 6172 . . . . . . . . 9  |-  ( t  e.  ( CC  X.  CC )  <->  ( t  = 
<. ( 1st `  t
) ,  ( 2nd `  t ) >.  /\  (
( 1st `  t
)  e.  CC  /\  ( 2nd `  t )  e.  CC ) ) )
3817, 36, 37sylanbrc 417 . . . . . . . 8  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
t  e.  ( CC 
X.  CC ) )
3938rexlimdva2 2597 . . . . . . 7  |-  ( ( ( ( t  e. # 
/\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  ->  ( E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) )  ->  t  e.  ( CC  X.  CC ) ) )
4039rexlimdva 2594 . . . . . 6  |-  ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  ->  ( E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) )  ->  t  e.  ( CC  X.  CC ) ) )
4140rexlimdva 2594 . . . . 5  |-  ( ( t  e. #  /\  p  e.  RR )  ->  ( E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) )  ->  t  e.  ( CC  X.  CC ) ) )
4241rexlimdva 2594 . . . 4  |-  ( t  e. #  ->  ( E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) )  ->  t  e.  ( CC  X.  CC ) ) )
4313, 42mpd 13 . . 3  |-  ( t  e. #  ->  t  e.  ( CC  X.  CC ) )
4443ssriv 3161 . 2  |- #  C_  ( CC  X.  CC )
45 apirr 8564 . . . 4  |-  ( x  e.  CC  ->  -.  x #  x )
4645rgen 2530 . . 3  |-  A. x  e.  CC  -.  x #  x
47 apsym 8565 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x #  y  <->  y #  x
) )
4847biimpd 144 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x #  y  -> 
y #  x ) )
4948rgen2 2563 . . 3  |-  A. x  e.  CC  A. y  e.  CC  ( x #  y  ->  y #  x )
5046, 49pm3.2i 272 . 2  |-  ( A. x  e.  CC  -.  x #  x  /\  A. x  e.  CC  A. y  e.  CC  ( x #  y  ->  y #  x ) )
51 apcotr 8566 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
x #  y  ->  (
x #  z  \/  y #  z ) ) )
5251rgen3 2564 . . 3  |-  A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  ( x #  y  ->  ( x #  z  \/  y #  z ) )
53 apti 8581 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  =  y  <->  -.  x #  y )
)
5453biimprd 158 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( -.  x #  y  ->  x  =  y ) )
5554rgen2 2563 . . 3  |-  A. x  e.  CC  A. y  e.  CC  ( -.  x #  y  ->  x  =  y )
5652, 55pm3.2i 272 . 2  |-  ( A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  ( x #  y  ->  ( x #  z  \/  y #  z ) )  /\  A. x  e.  CC  A. y  e.  CC  ( -.  x #  y  ->  x  =  y ) )
57 dftap2 7252 . 2  |-  ( # TAp  CC  <->  ( #  C_  ( CC  X.  CC )  /\  ( A. x  e.  CC  -.  x #  x  /\  A. x  e.  CC  A. y  e.  CC  (
x #  y  ->  y #  x ) )  /\  ( A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  (
x #  y  ->  (
x #  z  \/  y #  z ) )  /\  A. x  e.  CC  A. y  e.  CC  ( -.  x #  y  ->  x  =  y ) ) ) )
5844, 50, 56, 57mpbir3an 1179 1  |- # TAp  CC
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    C_ wss 3131   <.cop 3597   class class class wbr 4005   {copab 4065    X. cxp 4626   Rel wrel 4633   ` cfv 5218  (class class class)co 5877   1stc1st 6141   2ndc2nd 6142   TAp wtap 7250   CCcc 7811   RRcr 7812   _ici 7815    + caddc 7816    x. cmul 7818   # creap 8533   # cap 8540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fo 5224  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pap 7249  df-tap 7251  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator