ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptap Unicode version

Theorem aptap 8758
Description: Complex apartness (as defined at df-ap 8690) is a tight apartness (as defined at df-tap 7397). (Contributed by Jim Kingdon, 16-Feb-2025.)
Assertion
Ref Expression
aptap  |- # TAp  CC

Proof of Theorem aptap
Dummy variables  q  p  r  s  t  u  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2214 . . . . . . . . . 10  |-  ( u  =  ( 1st `  t
)  ->  ( u  =  ( p  +  ( _i  x.  q
) )  <->  ( 1st `  t )  =  ( p  +  ( _i  x.  q ) ) ) )
21anbi1d 465 . . . . . . . . 9  |-  ( u  =  ( 1st `  t
)  ->  ( (
u  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) )  <-> 
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) ) ) )
32anbi1d 465 . . . . . . . 8  |-  ( u  =  ( 1st `  t
)  ->  ( (
( u  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) )  /\  ( p #  r  \/  q #  s ) )  <-> 
( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) )  /\  ( p #  r  \/  q #  s ) ) ) )
432rexbidv 2533 . . . . . . 7  |-  ( u  =  ( 1st `  t
)  ->  ( E. r  e.  RR  E. s  e.  RR  ( ( u  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) )  <->  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) ) )
542rexbidv 2533 . . . . . 6  |-  ( u  =  ( 1st `  t
)  ->  ( E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( u  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) )  <->  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) ) )
6 eqeq1 2214 . . . . . . . . . 10  |-  ( v  =  ( 2nd `  t
)  ->  ( v  =  ( r  +  ( _i  x.  s
) )  <->  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) ) )
76anbi2d 464 . . . . . . . . 9  |-  ( v  =  ( 2nd `  t
)  ->  ( (
( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) )  <-> 
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) ) ) )
87anbi1d 465 . . . . . . . 8  |-  ( v  =  ( 2nd `  t
)  ->  ( (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) )  /\  ( p #  r  \/  q #  s ) )  <->  ( (
( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) ) )
982rexbidv 2533 . . . . . . 7  |-  ( v  =  ( 2nd `  t
)  ->  ( E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) )  <->  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) ) ) )
1092rexbidv 2533 . . . . . 6  |-  ( v  =  ( 2nd `  t
)  ->  ( E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) )  <->  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) ) ) )
115, 10elopabi 6304 . . . . 5  |-  ( t  e.  { <. u ,  v >.  |  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( u  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) }  ->  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) ) )
12 df-ap 8690 . . . . 5  |- #  =  { <. u ,  v >.  |  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( u  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) }
1311, 12eleq2s 2302 . . . 4  |-  ( t  e. #  ->  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) ) )
1412relopabi 4821 . . . . . . . . . 10  |-  Rel #
15 simp-5l 543 . . . . . . . . . 10  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
t  e. #  )
16 1st2nd 6290 . . . . . . . . . 10  |-  ( ( Rel #  /\  t  e. #  )  ->  t  =  <. ( 1st `  t ) ,  ( 2nd `  t
) >. )
1714, 15, 16sylancr 414 . . . . . . . . 9  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
t  =  <. ( 1st `  t ) ,  ( 2nd `  t
) >. )
18 simprll 537 . . . . . . . . . . 11  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( 1st `  t
)  =  ( p  +  ( _i  x.  q ) ) )
19 simp-5r 544 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  ->  p  e.  RR )
2019recnd 8136 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  ->  p  e.  CC )
21 ax-icn 8055 . . . . . . . . . . . . . 14  |-  _i  e.  CC
2221a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  ->  _i  e.  CC )
23 simp-4r 542 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
q  e.  RR )
2423recnd 8136 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
q  e.  CC )
2522, 24mulcld 8128 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( _i  x.  q
)  e.  CC )
2620, 25addcld 8127 . . . . . . . . . . 11  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( p  +  ( _i  x.  q ) )  e.  CC )
2718, 26eqeltrd 2284 . . . . . . . . . 10  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( 1st `  t
)  e.  CC )
28 simprlr 538 . . . . . . . . . . 11  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( 2nd `  t
)  =  ( r  +  ( _i  x.  s ) ) )
29 simpllr 534 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
r  e.  RR )
3029recnd 8136 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
r  e.  CC )
31 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
s  e.  RR )
3231recnd 8136 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
s  e.  CC )
3322, 32mulcld 8128 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( _i  x.  s
)  e.  CC )
3430, 33addcld 8127 . . . . . . . . . . 11  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( r  +  ( _i  x.  s ) )  e.  CC )
3528, 34eqeltrd 2284 . . . . . . . . . 10  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( 2nd `  t
)  e.  CC )
3627, 35jca 306 . . . . . . . . 9  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( ( 1st `  t
)  e.  CC  /\  ( 2nd `  t )  e.  CC ) )
37 elxp6 6278 . . . . . . . . 9  |-  ( t  e.  ( CC  X.  CC )  <->  ( t  = 
<. ( 1st `  t
) ,  ( 2nd `  t ) >.  /\  (
( 1st `  t
)  e.  CC  /\  ( 2nd `  t )  e.  CC ) ) )
3817, 36, 37sylanbrc 417 . . . . . . . 8  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
t  e.  ( CC 
X.  CC ) )
3938rexlimdva2 2628 . . . . . . 7  |-  ( ( ( ( t  e. # 
/\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  ->  ( E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) )  ->  t  e.  ( CC  X.  CC ) ) )
4039rexlimdva 2625 . . . . . 6  |-  ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  ->  ( E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) )  ->  t  e.  ( CC  X.  CC ) ) )
4140rexlimdva 2625 . . . . 5  |-  ( ( t  e. #  /\  p  e.  RR )  ->  ( E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) )  ->  t  e.  ( CC  X.  CC ) ) )
4241rexlimdva 2625 . . . 4  |-  ( t  e. #  ->  ( E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) )  ->  t  e.  ( CC  X.  CC ) ) )
4313, 42mpd 13 . . 3  |-  ( t  e. #  ->  t  e.  ( CC  X.  CC ) )
4443ssriv 3205 . 2  |- #  C_  ( CC  X.  CC )
45 apirr 8713 . . . 4  |-  ( x  e.  CC  ->  -.  x #  x )
4645rgen 2561 . . 3  |-  A. x  e.  CC  -.  x #  x
47 apsym 8714 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x #  y  <->  y #  x
) )
4847biimpd 144 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x #  y  -> 
y #  x ) )
4948rgen2 2594 . . 3  |-  A. x  e.  CC  A. y  e.  CC  ( x #  y  ->  y #  x )
5046, 49pm3.2i 272 . 2  |-  ( A. x  e.  CC  -.  x #  x  /\  A. x  e.  CC  A. y  e.  CC  ( x #  y  ->  y #  x ) )
51 apcotr 8715 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
x #  y  ->  (
x #  z  \/  y #  z ) ) )
5251rgen3 2595 . . 3  |-  A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  ( x #  y  ->  ( x #  z  \/  y #  z ) )
53 apti 8730 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  =  y  <->  -.  x #  y )
)
5453biimprd 158 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( -.  x #  y  ->  x  =  y ) )
5554rgen2 2594 . . 3  |-  A. x  e.  CC  A. y  e.  CC  ( -.  x #  y  ->  x  =  y )
5652, 55pm3.2i 272 . 2  |-  ( A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  ( x #  y  ->  ( x #  z  \/  y #  z ) )  /\  A. x  e.  CC  A. y  e.  CC  ( -.  x #  y  ->  x  =  y ) )
57 dftap2 7398 . 2  |-  ( # TAp  CC  <->  ( #  C_  ( CC  X.  CC )  /\  ( A. x  e.  CC  -.  x #  x  /\  A. x  e.  CC  A. y  e.  CC  (
x #  y  ->  y #  x ) )  /\  ( A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  (
x #  y  ->  (
x #  z  \/  y #  z ) )  /\  A. x  e.  CC  A. y  e.  CC  ( -.  x #  y  ->  x  =  y ) ) ) )
5844, 50, 56, 57mpbir3an 1182 1  |- # TAp  CC
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487    C_ wss 3174   <.cop 3646   class class class wbr 4059   {copab 4120    X. cxp 4691   Rel wrel 4698   ` cfv 5290  (class class class)co 5967   1stc1st 6247   2ndc2nd 6248   TAp wtap 7396   CCcc 7958   RRcr 7959   _ici 7962    + caddc 7963    x. cmul 7965   # creap 8682   # cap 8689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fo 5296  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pap 7395  df-tap 7397  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator