ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptap Unicode version

Theorem aptap 8669
Description: Complex apartness (as defined at df-ap 8601) is a tight apartness (as defined at df-tap 7310). (Contributed by Jim Kingdon, 16-Feb-2025.)
Assertion
Ref Expression
aptap  |- # TAp  CC

Proof of Theorem aptap
Dummy variables  q  p  r  s  t  u  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2200 . . . . . . . . . 10  |-  ( u  =  ( 1st `  t
)  ->  ( u  =  ( p  +  ( _i  x.  q
) )  <->  ( 1st `  t )  =  ( p  +  ( _i  x.  q ) ) ) )
21anbi1d 465 . . . . . . . . 9  |-  ( u  =  ( 1st `  t
)  ->  ( (
u  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) )  <-> 
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) ) ) )
32anbi1d 465 . . . . . . . 8  |-  ( u  =  ( 1st `  t
)  ->  ( (
( u  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) )  /\  ( p #  r  \/  q #  s ) )  <-> 
( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) )  /\  ( p #  r  \/  q #  s ) ) ) )
432rexbidv 2519 . . . . . . 7  |-  ( u  =  ( 1st `  t
)  ->  ( E. r  e.  RR  E. s  e.  RR  ( ( u  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) )  <->  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) ) )
542rexbidv 2519 . . . . . 6  |-  ( u  =  ( 1st `  t
)  ->  ( E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( u  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) )  <->  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) ) )
6 eqeq1 2200 . . . . . . . . . 10  |-  ( v  =  ( 2nd `  t
)  ->  ( v  =  ( r  +  ( _i  x.  s
) )  <->  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) ) )
76anbi2d 464 . . . . . . . . 9  |-  ( v  =  ( 2nd `  t
)  ->  ( (
( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) )  <-> 
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) ) ) )
87anbi1d 465 . . . . . . . 8  |-  ( v  =  ( 2nd `  t
)  ->  ( (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) )  /\  ( p #  r  \/  q #  s ) )  <->  ( (
( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) ) )
982rexbidv 2519 . . . . . . 7  |-  ( v  =  ( 2nd `  t
)  ->  ( E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) )  <->  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) ) ) )
1092rexbidv 2519 . . . . . 6  |-  ( v  =  ( 2nd `  t
)  ->  ( E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) )  <->  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) ) ) )
115, 10elopabi 6248 . . . . 5  |-  ( t  e.  { <. u ,  v >.  |  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( u  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) }  ->  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) ) )
12 df-ap 8601 . . . . 5  |- #  =  { <. u ,  v >.  |  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( u  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) }
1311, 12eleq2s 2288 . . . 4  |-  ( t  e. #  ->  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) ) )
1412relopabi 4787 . . . . . . . . . 10  |-  Rel #
15 simp-5l 543 . . . . . . . . . 10  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
t  e. #  )
16 1st2nd 6234 . . . . . . . . . 10  |-  ( ( Rel #  /\  t  e. #  )  ->  t  =  <. ( 1st `  t ) ,  ( 2nd `  t
) >. )
1714, 15, 16sylancr 414 . . . . . . . . 9  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
t  =  <. ( 1st `  t ) ,  ( 2nd `  t
) >. )
18 simprll 537 . . . . . . . . . . 11  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( 1st `  t
)  =  ( p  +  ( _i  x.  q ) ) )
19 simp-5r 544 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  ->  p  e.  RR )
2019recnd 8048 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  ->  p  e.  CC )
21 ax-icn 7967 . . . . . . . . . . . . . 14  |-  _i  e.  CC
2221a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  ->  _i  e.  CC )
23 simp-4r 542 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
q  e.  RR )
2423recnd 8048 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
q  e.  CC )
2522, 24mulcld 8040 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( _i  x.  q
)  e.  CC )
2620, 25addcld 8039 . . . . . . . . . . 11  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( p  +  ( _i  x.  q ) )  e.  CC )
2718, 26eqeltrd 2270 . . . . . . . . . 10  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( 1st `  t
)  e.  CC )
28 simprlr 538 . . . . . . . . . . 11  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( 2nd `  t
)  =  ( r  +  ( _i  x.  s ) ) )
29 simpllr 534 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
r  e.  RR )
3029recnd 8048 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
r  e.  CC )
31 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
s  e.  RR )
3231recnd 8048 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
s  e.  CC )
3322, 32mulcld 8040 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( _i  x.  s
)  e.  CC )
3430, 33addcld 8039 . . . . . . . . . . 11  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( r  +  ( _i  x.  s ) )  e.  CC )
3528, 34eqeltrd 2270 . . . . . . . . . 10  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( 2nd `  t
)  e.  CC )
3627, 35jca 306 . . . . . . . . 9  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( ( 1st `  t
)  e.  CC  /\  ( 2nd `  t )  e.  CC ) )
37 elxp6 6222 . . . . . . . . 9  |-  ( t  e.  ( CC  X.  CC )  <->  ( t  = 
<. ( 1st `  t
) ,  ( 2nd `  t ) >.  /\  (
( 1st `  t
)  e.  CC  /\  ( 2nd `  t )  e.  CC ) ) )
3817, 36, 37sylanbrc 417 . . . . . . . 8  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
t  e.  ( CC 
X.  CC ) )
3938rexlimdva2 2614 . . . . . . 7  |-  ( ( ( ( t  e. # 
/\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  ->  ( E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) )  ->  t  e.  ( CC  X.  CC ) ) )
4039rexlimdva 2611 . . . . . 6  |-  ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  ->  ( E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) )  ->  t  e.  ( CC  X.  CC ) ) )
4140rexlimdva 2611 . . . . 5  |-  ( ( t  e. #  /\  p  e.  RR )  ->  ( E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) )  ->  t  e.  ( CC  X.  CC ) ) )
4241rexlimdva 2611 . . . 4  |-  ( t  e. #  ->  ( E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) )  ->  t  e.  ( CC  X.  CC ) ) )
4313, 42mpd 13 . . 3  |-  ( t  e. #  ->  t  e.  ( CC  X.  CC ) )
4443ssriv 3183 . 2  |- #  C_  ( CC  X.  CC )
45 apirr 8624 . . . 4  |-  ( x  e.  CC  ->  -.  x #  x )
4645rgen 2547 . . 3  |-  A. x  e.  CC  -.  x #  x
47 apsym 8625 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x #  y  <->  y #  x
) )
4847biimpd 144 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x #  y  -> 
y #  x ) )
4948rgen2 2580 . . 3  |-  A. x  e.  CC  A. y  e.  CC  ( x #  y  ->  y #  x )
5046, 49pm3.2i 272 . 2  |-  ( A. x  e.  CC  -.  x #  x  /\  A. x  e.  CC  A. y  e.  CC  ( x #  y  ->  y #  x ) )
51 apcotr 8626 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
x #  y  ->  (
x #  z  \/  y #  z ) ) )
5251rgen3 2581 . . 3  |-  A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  ( x #  y  ->  ( x #  z  \/  y #  z ) )
53 apti 8641 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  =  y  <->  -.  x #  y )
)
5453biimprd 158 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( -.  x #  y  ->  x  =  y ) )
5554rgen2 2580 . . 3  |-  A. x  e.  CC  A. y  e.  CC  ( -.  x #  y  ->  x  =  y )
5652, 55pm3.2i 272 . 2  |-  ( A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  ( x #  y  ->  ( x #  z  \/  y #  z ) )  /\  A. x  e.  CC  A. y  e.  CC  ( -.  x #  y  ->  x  =  y ) )
57 dftap2 7311 . 2  |-  ( # TAp  CC  <->  ( #  C_  ( CC  X.  CC )  /\  ( A. x  e.  CC  -.  x #  x  /\  A. x  e.  CC  A. y  e.  CC  (
x #  y  ->  y #  x ) )  /\  ( A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  (
x #  y  ->  (
x #  z  \/  y #  z ) )  /\  A. x  e.  CC  A. y  e.  CC  ( -.  x #  y  ->  x  =  y ) ) ) )
5844, 50, 56, 57mpbir3an 1181 1  |- # TAp  CC
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473    C_ wss 3153   <.cop 3621   class class class wbr 4029   {copab 4089    X. cxp 4657   Rel wrel 4664   ` cfv 5254  (class class class)co 5918   1stc1st 6191   2ndc2nd 6192   TAp wtap 7309   CCcc 7870   RRcr 7871   _ici 7874    + caddc 7875    x. cmul 7877   # creap 8593   # cap 8600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pap 7308  df-tap 7310  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator