ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptap Unicode version

Theorem aptap 8797
Description: Complex apartness (as defined at df-ap 8729) is a tight apartness (as defined at df-tap 7436). (Contributed by Jim Kingdon, 16-Feb-2025.)
Assertion
Ref Expression
aptap  |- # TAp  CC

Proof of Theorem aptap
Dummy variables  q  p  r  s  t  u  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2236 . . . . . . . . . 10  |-  ( u  =  ( 1st `  t
)  ->  ( u  =  ( p  +  ( _i  x.  q
) )  <->  ( 1st `  t )  =  ( p  +  ( _i  x.  q ) ) ) )
21anbi1d 465 . . . . . . . . 9  |-  ( u  =  ( 1st `  t
)  ->  ( (
u  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) )  <-> 
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) ) ) )
32anbi1d 465 . . . . . . . 8  |-  ( u  =  ( 1st `  t
)  ->  ( (
( u  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) )  /\  ( p #  r  \/  q #  s ) )  <-> 
( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) )  /\  ( p #  r  \/  q #  s ) ) ) )
432rexbidv 2555 . . . . . . 7  |-  ( u  =  ( 1st `  t
)  ->  ( E. r  e.  RR  E. s  e.  RR  ( ( u  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) )  <->  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) ) )
542rexbidv 2555 . . . . . 6  |-  ( u  =  ( 1st `  t
)  ->  ( E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( u  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) )  <->  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) ) )
6 eqeq1 2236 . . . . . . . . . 10  |-  ( v  =  ( 2nd `  t
)  ->  ( v  =  ( r  +  ( _i  x.  s
) )  <->  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) ) )
76anbi2d 464 . . . . . . . . 9  |-  ( v  =  ( 2nd `  t
)  ->  ( (
( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) )  <-> 
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) ) ) )
87anbi1d 465 . . . . . . . 8  |-  ( v  =  ( 2nd `  t
)  ->  ( (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  v  =  ( r  +  ( _i  x.  s ) ) )  /\  ( p #  r  \/  q #  s ) )  <->  ( (
( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) ) )
982rexbidv 2555 . . . . . . 7  |-  ( v  =  ( 2nd `  t
)  ->  ( E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) )  <->  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) ) ) )
1092rexbidv 2555 . . . . . 6  |-  ( v  =  ( 2nd `  t
)  ->  ( E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) )  <->  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) ) ) )
115, 10elopabi 6341 . . . . 5  |-  ( t  e.  { <. u ,  v >.  |  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( u  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) }  ->  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) ) )
12 df-ap 8729 . . . . 5  |- #  =  { <. u ,  v >.  |  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( u  =  ( p  +  ( _i  x.  q
) )  /\  v  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) }
1311, 12eleq2s 2324 . . . 4  |-  ( t  e. #  ->  E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) ) )
1412relopabi 4847 . . . . . . . . . 10  |-  Rel #
15 simp-5l 543 . . . . . . . . . 10  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
t  e. #  )
16 1st2nd 6327 . . . . . . . . . 10  |-  ( ( Rel #  /\  t  e. #  )  ->  t  =  <. ( 1st `  t ) ,  ( 2nd `  t
) >. )
1714, 15, 16sylancr 414 . . . . . . . . 9  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
t  =  <. ( 1st `  t ) ,  ( 2nd `  t
) >. )
18 simprll 537 . . . . . . . . . . 11  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( 1st `  t
)  =  ( p  +  ( _i  x.  q ) ) )
19 simp-5r 544 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  ->  p  e.  RR )
2019recnd 8175 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  ->  p  e.  CC )
21 ax-icn 8094 . . . . . . . . . . . . . 14  |-  _i  e.  CC
2221a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  ->  _i  e.  CC )
23 simp-4r 542 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
q  e.  RR )
2423recnd 8175 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
q  e.  CC )
2522, 24mulcld 8167 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( _i  x.  q
)  e.  CC )
2620, 25addcld 8166 . . . . . . . . . . 11  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( p  +  ( _i  x.  q ) )  e.  CC )
2718, 26eqeltrd 2306 . . . . . . . . . 10  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( 1st `  t
)  e.  CC )
28 simprlr 538 . . . . . . . . . . 11  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( 2nd `  t
)  =  ( r  +  ( _i  x.  s ) ) )
29 simpllr 534 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
r  e.  RR )
3029recnd 8175 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
r  e.  CC )
31 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
s  e.  RR )
3231recnd 8175 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
s  e.  CC )
3322, 32mulcld 8167 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( _i  x.  s
)  e.  CC )
3430, 33addcld 8166 . . . . . . . . . . 11  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( r  +  ( _i  x.  s ) )  e.  CC )
3528, 34eqeltrd 2306 . . . . . . . . . 10  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( 2nd `  t
)  e.  CC )
3627, 35jca 306 . . . . . . . . 9  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
( ( 1st `  t
)  e.  CC  /\  ( 2nd `  t )  e.  CC ) )
37 elxp6 6315 . . . . . . . . 9  |-  ( t  e.  ( CC  X.  CC )  <->  ( t  = 
<. ( 1st `  t
) ,  ( 2nd `  t ) >.  /\  (
( 1st `  t
)  e.  CC  /\  ( 2nd `  t )  e.  CC ) ) )
3817, 36, 37sylanbrc 417 . . . . . . . 8  |-  ( ( ( ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  /\  s  e.  RR )  /\  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) ) )  -> 
t  e.  ( CC 
X.  CC ) )
3938rexlimdva2 2651 . . . . . . 7  |-  ( ( ( ( t  e. # 
/\  p  e.  RR )  /\  q  e.  RR )  /\  r  e.  RR )  ->  ( E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) )  ->  t  e.  ( CC  X.  CC ) ) )
4039rexlimdva 2648 . . . . . 6  |-  ( ( ( t  e. #  /\  p  e.  RR )  /\  q  e.  RR )  ->  ( E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) )  ->  t  e.  ( CC  X.  CC ) ) )
4140rexlimdva 2648 . . . . 5  |-  ( ( t  e. #  /\  p  e.  RR )  ->  ( E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  (
( ( 1st `  t
)  =  ( p  +  ( _i  x.  q ) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s
) ) )  /\  ( p #  r  \/  q #  s
) )  ->  t  e.  ( CC  X.  CC ) ) )
4241rexlimdva 2648 . . . 4  |-  ( t  e. #  ->  ( E. p  e.  RR  E. q  e.  RR  E. r  e.  RR  E. s  e.  RR  ( ( ( 1st `  t )  =  ( p  +  ( _i  x.  q
) )  /\  ( 2nd `  t )  =  ( r  +  ( _i  x.  s ) ) )  /\  (
p #  r  \/  q #  s ) )  ->  t  e.  ( CC  X.  CC ) ) )
4313, 42mpd 13 . . 3  |-  ( t  e. #  ->  t  e.  ( CC  X.  CC ) )
4443ssriv 3228 . 2  |- #  C_  ( CC  X.  CC )
45 apirr 8752 . . . 4  |-  ( x  e.  CC  ->  -.  x #  x )
4645rgen 2583 . . 3  |-  A. x  e.  CC  -.  x #  x
47 apsym 8753 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x #  y  <->  y #  x
) )
4847biimpd 144 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x #  y  -> 
y #  x ) )
4948rgen2 2616 . . 3  |-  A. x  e.  CC  A. y  e.  CC  ( x #  y  ->  y #  x )
5046, 49pm3.2i 272 . 2  |-  ( A. x  e.  CC  -.  x #  x  /\  A. x  e.  CC  A. y  e.  CC  ( x #  y  ->  y #  x ) )
51 apcotr 8754 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
x #  y  ->  (
x #  z  \/  y #  z ) ) )
5251rgen3 2617 . . 3  |-  A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  ( x #  y  ->  ( x #  z  \/  y #  z ) )
53 apti 8769 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  =  y  <->  -.  x #  y )
)
5453biimprd 158 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( -.  x #  y  ->  x  =  y ) )
5554rgen2 2616 . . 3  |-  A. x  e.  CC  A. y  e.  CC  ( -.  x #  y  ->  x  =  y )
5652, 55pm3.2i 272 . 2  |-  ( A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  ( x #  y  ->  ( x #  z  \/  y #  z ) )  /\  A. x  e.  CC  A. y  e.  CC  ( -.  x #  y  ->  x  =  y ) )
57 dftap2 7437 . 2  |-  ( # TAp  CC  <->  ( #  C_  ( CC  X.  CC )  /\  ( A. x  e.  CC  -.  x #  x  /\  A. x  e.  CC  A. y  e.  CC  (
x #  y  ->  y #  x ) )  /\  ( A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  (
x #  y  ->  (
x #  z  \/  y #  z ) )  /\  A. x  e.  CC  A. y  e.  CC  ( -.  x #  y  ->  x  =  y ) ) ) )
5844, 50, 56, 57mpbir3an 1203 1  |- # TAp  CC
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509    C_ wss 3197   <.cop 3669   class class class wbr 4083   {copab 4144    X. cxp 4717   Rel wrel 4724   ` cfv 5318  (class class class)co 6001   1stc1st 6284   2ndc2nd 6285   TAp wtap 7435   CCcc 7997   RRcr 7998   _ici 8001    + caddc 8002    x. cmul 8004   # creap 8721   # cap 8728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pap 7434  df-tap 7436  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator