ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smodm2 Unicode version

Theorem smodm2 6353
Description: The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smodm2  |-  ( ( F  Fn  A  /\  Smo  F )  ->  Ord  A )

Proof of Theorem smodm2
StepHypRef Expression
1 smodm 6349 . 2  |-  ( Smo 
F  ->  Ord  dom  F
)
2 fndm 5357 . . . 4  |-  ( F  Fn  A  ->  dom  F  =  A )
3 ordeq 4407 . . . 4  |-  ( dom 
F  =  A  -> 
( Ord  dom  F  <->  Ord  A ) )
42, 3syl 14 . . 3  |-  ( F  Fn  A  ->  ( Ord  dom  F  <->  Ord  A ) )
54biimpa 296 . 2  |-  ( ( F  Fn  A  /\  Ord  dom  F )  ->  Ord  A )
61, 5sylan2 286 1  |-  ( ( F  Fn  A  /\  Smo  F )  ->  Ord  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   Ord word 4397   dom cdm 4663    Fn wfn 5253   Smo wsmo 6343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-in 3163  df-ss 3170  df-uni 3840  df-tr 4132  df-iord 4401  df-fn 5261  df-smo 6344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator