ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smodm2 Unicode version

Theorem smodm2 6244
Description: The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smodm2  |-  ( ( F  Fn  A  /\  Smo  F )  ->  Ord  A )

Proof of Theorem smodm2
StepHypRef Expression
1 smodm 6240 . 2  |-  ( Smo 
F  ->  Ord  dom  F
)
2 fndm 5271 . . . 4  |-  ( F  Fn  A  ->  dom  F  =  A )
3 ordeq 4334 . . . 4  |-  ( dom 
F  =  A  -> 
( Ord  dom  F  <->  Ord  A ) )
42, 3syl 14 . . 3  |-  ( F  Fn  A  ->  ( Ord  dom  F  <->  Ord  A ) )
54biimpa 294 . 2  |-  ( ( F  Fn  A  /\  Ord  dom  F )  ->  Ord  A )
61, 5sylan2 284 1  |-  ( ( F  Fn  A  /\  Smo  F )  ->  Ord  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335   Ord word 4324   dom cdm 4588    Fn wfn 5167   Smo wsmo 6234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-in 3108  df-ss 3115  df-uni 3775  df-tr 4065  df-iord 4328  df-fn 5175  df-smo 6235
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator