ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smodm2 Unicode version

Theorem smodm2 6274
Description: The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smodm2  |-  ( ( F  Fn  A  /\  Smo  F )  ->  Ord  A )

Proof of Theorem smodm2
StepHypRef Expression
1 smodm 6270 . 2  |-  ( Smo 
F  ->  Ord  dom  F
)
2 fndm 5297 . . . 4  |-  ( F  Fn  A  ->  dom  F  =  A )
3 ordeq 4357 . . . 4  |-  ( dom 
F  =  A  -> 
( Ord  dom  F  <->  Ord  A ) )
42, 3syl 14 . . 3  |-  ( F  Fn  A  ->  ( Ord  dom  F  <->  Ord  A ) )
54biimpa 294 . 2  |-  ( ( F  Fn  A  /\  Ord  dom  F )  ->  Ord  A )
61, 5sylan2 284 1  |-  ( ( F  Fn  A  /\  Smo  F )  ->  Ord  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   Ord word 4347   dom cdm 4611    Fn wfn 5193   Smo wsmo 6264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-in 3127  df-ss 3134  df-uni 3797  df-tr 4088  df-iord 4351  df-fn 5201  df-smo 6265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator