ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smoeq Unicode version

Theorem smoeq 6285
Description: Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.)
Assertion
Ref Expression
smoeq  |-  ( A  =  B  ->  ( Smo  A  <->  Smo  B ) )

Proof of Theorem smoeq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4  |-  ( A  =  B  ->  A  =  B )
2 dmeq 4823 . . . 4  |-  ( A  =  B  ->  dom  A  =  dom  B )
31, 2feq12d 5351 . . 3  |-  ( A  =  B  ->  ( A : dom  A --> On  <->  B : dom  B --> On ) )
4 ordeq 4369 . . . 4  |-  ( dom 
A  =  dom  B  ->  ( Ord  dom  A  <->  Ord 
dom  B ) )
52, 4syl 14 . . 3  |-  ( A  =  B  ->  ( Ord  dom  A  <->  Ord  dom  B
) )
6 fveq1 5510 . . . . . . 7  |-  ( A  =  B  ->  ( A `  x )  =  ( B `  x ) )
7 fveq1 5510 . . . . . . 7  |-  ( A  =  B  ->  ( A `  y )  =  ( B `  y ) )
86, 7eleq12d 2248 . . . . . 6  |-  ( A  =  B  ->  (
( A `  x
)  e.  ( A `
 y )  <->  ( B `  x )  e.  ( B `  y ) ) )
98imbi2d 230 . . . . 5  |-  ( A  =  B  ->  (
( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  <->  ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
1092ralbidv 2501 . . . 4  |-  ( A  =  B  ->  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  <->  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
112raleqdv 2678 . . . . 5  |-  ( A  =  B  ->  ( A. y  e.  dom  A ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) )  <->  A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
1211ralbidv 2477 . . . 4  |-  ( A  =  B  ->  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) )  <->  A. x  e.  dom  A A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
132raleqdv 2678 . . . 4  |-  ( A  =  B  ->  ( A. x  e.  dom  A A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) )  <->  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
1410, 12, 133bitrd 214 . . 3  |-  ( A  =  B  ->  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  <->  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
153, 5, 143anbi123d 1312 . 2  |-  ( A  =  B  ->  (
( A : dom  A --> On  /\  Ord  dom  A  /\  A. x  e. 
dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) )  <->  ( B : dom  B --> On  /\  Ord  dom  B  /\  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  -> 
( B `  x
)  e.  ( B `
 y ) ) ) ) )
16 df-smo 6281 . 2  |-  ( Smo 
A  <->  ( A : dom  A --> On  /\  Ord  dom 
A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
17 df-smo 6281 . 2  |-  ( Smo 
B  <->  ( B : dom  B --> On  /\  Ord  dom 
B  /\  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y
) ) ) )
1815, 16, 173bitr4g 223 1  |-  ( A  =  B  ->  ( Smo  A  <->  Smo  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   Ord word 4359   Oncon0 4360   dom cdm 4623   -->wf 5208   ` cfv 5212   Smo wsmo 6280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-tr 4099  df-iord 4363  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-smo 6281
This theorem is referenced by:  smores3  6288  smo0  6293
  Copyright terms: Public domain W3C validator