ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smoeq Unicode version

Theorem smoeq 6357
Description: Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.)
Assertion
Ref Expression
smoeq  |-  ( A  =  B  ->  ( Smo  A  <->  Smo  B ) )

Proof of Theorem smoeq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4  |-  ( A  =  B  ->  A  =  B )
2 dmeq 4867 . . . 4  |-  ( A  =  B  ->  dom  A  =  dom  B )
31, 2feq12d 5400 . . 3  |-  ( A  =  B  ->  ( A : dom  A --> On  <->  B : dom  B --> On ) )
4 ordeq 4408 . . . 4  |-  ( dom 
A  =  dom  B  ->  ( Ord  dom  A  <->  Ord 
dom  B ) )
52, 4syl 14 . . 3  |-  ( A  =  B  ->  ( Ord  dom  A  <->  Ord  dom  B
) )
6 fveq1 5560 . . . . . . 7  |-  ( A  =  B  ->  ( A `  x )  =  ( B `  x ) )
7 fveq1 5560 . . . . . . 7  |-  ( A  =  B  ->  ( A `  y )  =  ( B `  y ) )
86, 7eleq12d 2267 . . . . . 6  |-  ( A  =  B  ->  (
( A `  x
)  e.  ( A `
 y )  <->  ( B `  x )  e.  ( B `  y ) ) )
98imbi2d 230 . . . . 5  |-  ( A  =  B  ->  (
( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  <->  ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
1092ralbidv 2521 . . . 4  |-  ( A  =  B  ->  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  <->  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
112raleqdv 2699 . . . . 5  |-  ( A  =  B  ->  ( A. y  e.  dom  A ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) )  <->  A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
1211ralbidv 2497 . . . 4  |-  ( A  =  B  ->  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) )  <->  A. x  e.  dom  A A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
132raleqdv 2699 . . . 4  |-  ( A  =  B  ->  ( A. x  e.  dom  A A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) )  <->  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
1410, 12, 133bitrd 214 . . 3  |-  ( A  =  B  ->  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  <->  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
153, 5, 143anbi123d 1323 . 2  |-  ( A  =  B  ->  (
( A : dom  A --> On  /\  Ord  dom  A  /\  A. x  e. 
dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) )  <->  ( B : dom  B --> On  /\  Ord  dom  B  /\  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  -> 
( B `  x
)  e.  ( B `
 y ) ) ) ) )
16 df-smo 6353 . 2  |-  ( Smo 
A  <->  ( A : dom  A --> On  /\  Ord  dom 
A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
17 df-smo 6353 . 2  |-  ( Smo 
B  <->  ( B : dom  B --> On  /\  Ord  dom 
B  /\  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y
) ) ) )
1815, 16, 173bitr4g 223 1  |-  ( A  =  B  ->  ( Smo  A  <->  Smo  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   Ord word 4398   Oncon0 4399   dom cdm 4664   -->wf 5255   ` cfv 5259   Smo wsmo 6352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-tr 4133  df-iord 4402  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-smo 6353
This theorem is referenced by:  smores3  6360  smo0  6365
  Copyright terms: Public domain W3C validator