Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > smoeq | Unicode version |
Description: Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.) |
Ref | Expression |
---|---|
smoeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . 4 | |
2 | dmeq 4785 | . . . 4 | |
3 | 1, 2 | feq12d 5308 | . . 3 |
4 | ordeq 4332 | . . . 4 | |
5 | 2, 4 | syl 14 | . . 3 |
6 | fveq1 5466 | . . . . . . 7 | |
7 | fveq1 5466 | . . . . . . 7 | |
8 | 6, 7 | eleq12d 2228 | . . . . . 6 |
9 | 8 | imbi2d 229 | . . . . 5 |
10 | 9 | 2ralbidv 2481 | . . . 4 |
11 | 2 | raleqdv 2658 | . . . . 5 |
12 | 11 | ralbidv 2457 | . . . 4 |
13 | 2 | raleqdv 2658 | . . . 4 |
14 | 10, 12, 13 | 3bitrd 213 | . . 3 |
15 | 3, 5, 14 | 3anbi123d 1294 | . 2 |
16 | df-smo 6230 | . 2 | |
17 | df-smo 6230 | . 2 | |
18 | 15, 16, 17 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 963 wceq 1335 wcel 2128 wral 2435 word 4322 con0 4323 cdm 4585 wf 5165 cfv 5169 wsmo 6229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-tr 4063 df-iord 4326 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-fv 5177 df-smo 6230 |
This theorem is referenced by: smores3 6237 smo0 6242 |
Copyright terms: Public domain | W3C validator |