ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smoeq Unicode version

Theorem smoeq 6138
Description: Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.)
Assertion
Ref Expression
smoeq  |-  ( A  =  B  ->  ( Smo  A  <->  Smo  B ) )

Proof of Theorem smoeq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4  |-  ( A  =  B  ->  A  =  B )
2 dmeq 4697 . . . 4  |-  ( A  =  B  ->  dom  A  =  dom  B )
31, 2feq12d 5218 . . 3  |-  ( A  =  B  ->  ( A : dom  A --> On  <->  B : dom  B --> On ) )
4 ordeq 4252 . . . 4  |-  ( dom 
A  =  dom  B  ->  ( Ord  dom  A  <->  Ord 
dom  B ) )
52, 4syl 14 . . 3  |-  ( A  =  B  ->  ( Ord  dom  A  <->  Ord  dom  B
) )
6 fveq1 5372 . . . . . . 7  |-  ( A  =  B  ->  ( A `  x )  =  ( B `  x ) )
7 fveq1 5372 . . . . . . 7  |-  ( A  =  B  ->  ( A `  y )  =  ( B `  y ) )
86, 7eleq12d 2183 . . . . . 6  |-  ( A  =  B  ->  (
( A `  x
)  e.  ( A `
 y )  <->  ( B `  x )  e.  ( B `  y ) ) )
98imbi2d 229 . . . . 5  |-  ( A  =  B  ->  (
( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  <->  ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
1092ralbidv 2431 . . . 4  |-  ( A  =  B  ->  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  <->  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
112raleqdv 2604 . . . . 5  |-  ( A  =  B  ->  ( A. y  e.  dom  A ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) )  <->  A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
1211ralbidv 2409 . . . 4  |-  ( A  =  B  ->  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) )  <->  A. x  e.  dom  A A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
132raleqdv 2604 . . . 4  |-  ( A  =  B  ->  ( A. x  e.  dom  A A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) )  <->  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
1410, 12, 133bitrd 213 . . 3  |-  ( A  =  B  ->  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  <->  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
153, 5, 143anbi123d 1271 . 2  |-  ( A  =  B  ->  (
( A : dom  A --> On  /\  Ord  dom  A  /\  A. x  e. 
dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) )  <->  ( B : dom  B --> On  /\  Ord  dom  B  /\  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  -> 
( B `  x
)  e.  ( B `
 y ) ) ) ) )
16 df-smo 6134 . 2  |-  ( Smo 
A  <->  ( A : dom  A --> On  /\  Ord  dom 
A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
17 df-smo 6134 . 2  |-  ( Smo 
B  <->  ( B : dom  B --> On  /\  Ord  dom 
B  /\  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y
) ) ) )
1815, 16, 173bitr4g 222 1  |-  ( A  =  B  ->  ( Smo  A  <->  Smo  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 943    = wceq 1312    e. wcel 1461   A.wral 2388   Ord word 4242   Oncon0 4243   dom cdm 4497   -->wf 5075   ` cfv 5079   Smo wsmo 6133
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-tr 3985  df-iord 4246  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-fv 5087  df-smo 6134
This theorem is referenced by:  smores3  6141  smo0  6146
  Copyright terms: Public domain W3C validator