Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > smoeq | Unicode version |
Description: Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.) |
Ref | Expression |
---|---|
smoeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . 4 | |
2 | dmeq 4804 | . . . 4 | |
3 | 1, 2 | feq12d 5327 | . . 3 |
4 | ordeq 4350 | . . . 4 | |
5 | 2, 4 | syl 14 | . . 3 |
6 | fveq1 5485 | . . . . . . 7 | |
7 | fveq1 5485 | . . . . . . 7 | |
8 | 6, 7 | eleq12d 2237 | . . . . . 6 |
9 | 8 | imbi2d 229 | . . . . 5 |
10 | 9 | 2ralbidv 2490 | . . . 4 |
11 | 2 | raleqdv 2667 | . . . . 5 |
12 | 11 | ralbidv 2466 | . . . 4 |
13 | 2 | raleqdv 2667 | . . . 4 |
14 | 10, 12, 13 | 3bitrd 213 | . . 3 |
15 | 3, 5, 14 | 3anbi123d 1302 | . 2 |
16 | df-smo 6254 | . 2 | |
17 | df-smo 6254 | . 2 | |
18 | 15, 16, 17 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 968 wceq 1343 wcel 2136 wral 2444 word 4340 con0 4341 cdm 4604 wf 5184 cfv 5188 wsmo 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-tr 4081 df-iord 4344 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-smo 6254 |
This theorem is referenced by: smores3 6261 smo0 6266 |
Copyright terms: Public domain | W3C validator |