| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > smoeq | Unicode version | ||
| Description: Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.) |
| Ref | Expression |
|---|---|
| smoeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . . 4
| |
| 2 | dmeq 4878 |
. . . 4
| |
| 3 | 1, 2 | feq12d 5415 |
. . 3
|
| 4 | ordeq 4419 |
. . . 4
| |
| 5 | 2, 4 | syl 14 |
. . 3
|
| 6 | fveq1 5575 |
. . . . . . 7
| |
| 7 | fveq1 5575 |
. . . . . . 7
| |
| 8 | 6, 7 | eleq12d 2276 |
. . . . . 6
|
| 9 | 8 | imbi2d 230 |
. . . . 5
|
| 10 | 9 | 2ralbidv 2530 |
. . . 4
|
| 11 | 2 | raleqdv 2708 |
. . . . 5
|
| 12 | 11 | ralbidv 2506 |
. . . 4
|
| 13 | 2 | raleqdv 2708 |
. . . 4
|
| 14 | 10, 12, 13 | 3bitrd 214 |
. . 3
|
| 15 | 3, 5, 14 | 3anbi123d 1325 |
. 2
|
| 16 | df-smo 6372 |
. 2
| |
| 17 | df-smo 6372 |
. 2
| |
| 18 | 15, 16, 17 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-tr 4143 df-iord 4413 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-smo 6372 |
| This theorem is referenced by: smores3 6379 smo0 6384 |
| Copyright terms: Public domain | W3C validator |