Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > smores | Unicode version |
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
Ref | Expression |
---|---|
smores |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres 5213 | . . . . . . . 8 | |
2 | funfn 5202 | . . . . . . . 8 | |
3 | funfn 5202 | . . . . . . . 8 | |
4 | 1, 2, 3 | 3imtr3i 199 | . . . . . . 7 |
5 | resss 4892 | . . . . . . . . 9 | |
6 | rnss 4818 | . . . . . . . . 9 | |
7 | 5, 6 | ax-mp 5 | . . . . . . . 8 |
8 | sstr 3136 | . . . . . . . 8 | |
9 | 7, 8 | mpan 421 | . . . . . . 7 |
10 | 4, 9 | anim12i 336 | . . . . . 6 |
11 | df-f 5176 | . . . . . 6 | |
12 | df-f 5176 | . . . . . 6 | |
13 | 10, 11, 12 | 3imtr4i 200 | . . . . 5 |
14 | 13 | a1i 9 | . . . 4 |
15 | ordelord 4343 | . . . . . . 7 | |
16 | 15 | expcom 115 | . . . . . 6 |
17 | ordin 4347 | . . . . . . 7 | |
18 | 17 | ex 114 | . . . . . 6 |
19 | 16, 18 | syli 37 | . . . . 5 |
20 | dmres 4889 | . . . . . 6 | |
21 | ordeq 4334 | . . . . . 6 | |
22 | 20, 21 | ax-mp 5 | . . . . 5 |
23 | 19, 22 | syl6ibr 161 | . . . 4 |
24 | dmss 4787 | . . . . . . . . 9 | |
25 | 5, 24 | ax-mp 5 | . . . . . . . 8 |
26 | ssralv 3192 | . . . . . . . 8 | |
27 | 25, 26 | ax-mp 5 | . . . . . . 7 |
28 | ssralv 3192 | . . . . . . . . 9 | |
29 | 25, 28 | ax-mp 5 | . . . . . . . 8 |
30 | 29 | ralimi 2520 | . . . . . . 7 |
31 | 27, 30 | syl 14 | . . . . . 6 |
32 | inss1 3328 | . . . . . . . . . . . . 13 | |
33 | 20, 32 | eqsstri 3160 | . . . . . . . . . . . 12 |
34 | simpl 108 | . . . . . . . . . . . 12 | |
35 | 33, 34 | sseldi 3126 | . . . . . . . . . . 11 |
36 | fvres 5494 | . . . . . . . . . . 11 | |
37 | 35, 36 | syl 14 | . . . . . . . . . 10 |
38 | simpr 109 | . . . . . . . . . . . 12 | |
39 | 33, 38 | sseldi 3126 | . . . . . . . . . . 11 |
40 | fvres 5494 | . . . . . . . . . . 11 | |
41 | 39, 40 | syl 14 | . . . . . . . . . 10 |
42 | 37, 41 | eleq12d 2228 | . . . . . . . . 9 |
43 | 42 | imbi2d 229 | . . . . . . . 8 |
44 | 43 | ralbidva 2453 | . . . . . . 7 |
45 | 44 | ralbiia 2471 | . . . . . 6 |
46 | 31, 45 | sylibr 133 | . . . . 5 |
47 | 46 | a1i 9 | . . . 4 |
48 | 14, 23, 47 | 3anim123d 1301 | . . 3 |
49 | df-smo 6235 | . . 3 | |
50 | df-smo 6235 | . . 3 | |
51 | 48, 49, 50 | 3imtr4g 204 | . 2 |
52 | 51 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1335 wcel 2128 wral 2435 cin 3101 wss 3102 word 4324 con0 4325 cdm 4588 crn 4589 cres 4590 wfun 5166 wfn 5167 wf 5168 cfv 5172 wsmo 6234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4084 ax-pow 4137 ax-pr 4171 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-br 3968 df-opab 4028 df-tr 4065 df-iord 4328 df-xp 4594 df-rel 4595 df-cnv 4596 df-co 4597 df-dm 4598 df-rn 4599 df-res 4600 df-iota 5137 df-fun 5174 df-fn 5175 df-f 5176 df-fv 5180 df-smo 6235 |
This theorem is referenced by: smores3 6242 |
Copyright terms: Public domain | W3C validator |