| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > smores | Unicode version | ||
| Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
| Ref | Expression |
|---|---|
| smores |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres 5359 |
. . . . . . . 8
| |
| 2 | funfn 5348 |
. . . . . . . 8
| |
| 3 | funfn 5348 |
. . . . . . . 8
| |
| 4 | 1, 2, 3 | 3imtr3i 200 |
. . . . . . 7
|
| 5 | resss 5029 |
. . . . . . . . 9
| |
| 6 | rnss 4954 |
. . . . . . . . 9
| |
| 7 | 5, 6 | ax-mp 5 |
. . . . . . . 8
|
| 8 | sstr 3232 |
. . . . . . . 8
| |
| 9 | 7, 8 | mpan 424 |
. . . . . . 7
|
| 10 | 4, 9 | anim12i 338 |
. . . . . 6
|
| 11 | df-f 5322 |
. . . . . 6
| |
| 12 | df-f 5322 |
. . . . . 6
| |
| 13 | 10, 11, 12 | 3imtr4i 201 |
. . . . 5
|
| 14 | 13 | a1i 9 |
. . . 4
|
| 15 | ordelord 4472 |
. . . . . . 7
| |
| 16 | 15 | expcom 116 |
. . . . . 6
|
| 17 | ordin 4476 |
. . . . . . 7
| |
| 18 | 17 | ex 115 |
. . . . . 6
|
| 19 | 16, 18 | syli 37 |
. . . . 5
|
| 20 | dmres 5026 |
. . . . . 6
| |
| 21 | ordeq 4463 |
. . . . . 6
| |
| 22 | 20, 21 | ax-mp 5 |
. . . . 5
|
| 23 | 19, 22 | imbitrrdi 162 |
. . . 4
|
| 24 | dmss 4922 |
. . . . . . . . 9
| |
| 25 | 5, 24 | ax-mp 5 |
. . . . . . . 8
|
| 26 | ssralv 3288 |
. . . . . . . 8
| |
| 27 | 25, 26 | ax-mp 5 |
. . . . . . 7
|
| 28 | ssralv 3288 |
. . . . . . . . 9
| |
| 29 | 25, 28 | ax-mp 5 |
. . . . . . . 8
|
| 30 | 29 | ralimi 2593 |
. . . . . . 7
|
| 31 | 27, 30 | syl 14 |
. . . . . 6
|
| 32 | inss1 3424 |
. . . . . . . . . . . . 13
| |
| 33 | 20, 32 | eqsstri 3256 |
. . . . . . . . . . . 12
|
| 34 | simpl 109 |
. . . . . . . . . . . 12
| |
| 35 | 33, 34 | sselid 3222 |
. . . . . . . . . . 11
|
| 36 | fvres 5651 |
. . . . . . . . . . 11
| |
| 37 | 35, 36 | syl 14 |
. . . . . . . . . 10
|
| 38 | simpr 110 |
. . . . . . . . . . . 12
| |
| 39 | 33, 38 | sselid 3222 |
. . . . . . . . . . 11
|
| 40 | fvres 5651 |
. . . . . . . . . . 11
| |
| 41 | 39, 40 | syl 14 |
. . . . . . . . . 10
|
| 42 | 37, 41 | eleq12d 2300 |
. . . . . . . . 9
|
| 43 | 42 | imbi2d 230 |
. . . . . . . 8
|
| 44 | 43 | ralbidva 2526 |
. . . . . . 7
|
| 45 | 44 | ralbiia 2544 |
. . . . . 6
|
| 46 | 31, 45 | sylibr 134 |
. . . . 5
|
| 47 | 46 | a1i 9 |
. . . 4
|
| 48 | 14, 23, 47 | 3anim123d 1353 |
. . 3
|
| 49 | df-smo 6432 |
. . 3
| |
| 50 | df-smo 6432 |
. . 3
| |
| 51 | 48, 49, 50 | 3imtr4g 205 |
. 2
|
| 52 | 51 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-tr 4183 df-iord 4457 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-smo 6432 |
| This theorem is referenced by: smores3 6439 |
| Copyright terms: Public domain | W3C validator |