ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smores Unicode version

Theorem smores 6039
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
smores  |-  ( ( Smo  A  /\  B  e.  dom  A )  ->  Smo  ( A  |`  B ) )

Proof of Theorem smores
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funres 5041 . . . . . . . 8  |-  ( Fun 
A  ->  Fun  ( A  |`  B ) )
2 funfn 5031 . . . . . . . 8  |-  ( Fun 
A  <->  A  Fn  dom  A )
3 funfn 5031 . . . . . . . 8  |-  ( Fun  ( A  |`  B )  <-> 
( A  |`  B )  Fn  dom  ( A  |`  B ) )
41, 2, 33imtr3i 198 . . . . . . 7  |-  ( A  Fn  dom  A  -> 
( A  |`  B )  Fn  dom  ( A  |`  B ) )
5 resss 4724 . . . . . . . . 9  |-  ( A  |`  B )  C_  A
6 rnss 4653 . . . . . . . . 9  |-  ( ( A  |`  B )  C_  A  ->  ran  ( A  |`  B )  C_  ran  A )
75, 6ax-mp 7 . . . . . . . 8  |-  ran  ( A  |`  B )  C_  ran  A
8 sstr 3031 . . . . . . . 8  |-  ( ( ran  ( A  |`  B )  C_  ran  A  /\  ran  A  C_  On )  ->  ran  ( A  |`  B )  C_  On )
97, 8mpan 415 . . . . . . 7  |-  ( ran 
A  C_  On  ->  ran  ( A  |`  B ) 
C_  On )
104, 9anim12i 331 . . . . . 6  |-  ( ( A  Fn  dom  A  /\  ran  A  C_  On )  ->  ( ( A  |`  B )  Fn  dom  ( A  |`  B )  /\  ran  ( A  |`  B )  C_  On ) )
11 df-f 5006 . . . . . 6  |-  ( A : dom  A --> On  <->  ( A  Fn  dom  A  /\  ran  A 
C_  On ) )
12 df-f 5006 . . . . . 6  |-  ( ( A  |`  B ) : dom  ( A  |`  B ) --> On  <->  ( ( A  |`  B )  Fn 
dom  ( A  |`  B )  /\  ran  ( A  |`  B ) 
C_  On ) )
1310, 11, 123imtr4i 199 . . . . 5  |-  ( A : dom  A --> On  ->  ( A  |`  B ) : dom  ( A  |`  B ) --> On )
1413a1i 9 . . . 4  |-  ( B  e.  dom  A  -> 
( A : dom  A --> On  ->  ( A  |`  B ) : dom  ( A  |`  B ) --> On ) )
15 ordelord 4199 . . . . . . 7  |-  ( ( Ord  dom  A  /\  B  e.  dom  A )  ->  Ord  B )
1615expcom 114 . . . . . 6  |-  ( B  e.  dom  A  -> 
( Ord  dom  A  ->  Ord  B ) )
17 ordin 4203 . . . . . . 7  |-  ( ( Ord  B  /\  Ord  dom 
A )  ->  Ord  ( B  i^i  dom  A
) )
1817ex 113 . . . . . 6  |-  ( Ord 
B  ->  ( Ord  dom 
A  ->  Ord  ( B  i^i  dom  A )
) )
1916, 18syli 37 . . . . 5  |-  ( B  e.  dom  A  -> 
( Ord  dom  A  ->  Ord  ( B  i^i  dom  A ) ) )
20 dmres 4721 . . . . . 6  |-  dom  ( A  |`  B )  =  ( B  i^i  dom  A )
21 ordeq 4190 . . . . . 6  |-  ( dom  ( A  |`  B )  =  ( B  i^i  dom 
A )  ->  ( Ord  dom  ( A  |`  B )  <->  Ord  ( B  i^i  dom  A )
) )
2220, 21ax-mp 7 . . . . 5  |-  ( Ord 
dom  ( A  |`  B )  <->  Ord  ( B  i^i  dom  A )
)
2319, 22syl6ibr 160 . . . 4  |-  ( B  e.  dom  A  -> 
( Ord  dom  A  ->  Ord  dom  ( A  |`  B ) ) )
24 dmss 4623 . . . . . . . . 9  |-  ( ( A  |`  B )  C_  A  ->  dom  ( A  |`  B )  C_  dom  A )
255, 24ax-mp 7 . . . . . . . 8  |-  dom  ( A  |`  B )  C_  dom  A
26 ssralv 3083 . . . . . . . 8  |-  ( dom  ( A  |`  B ) 
C_  dom  A  ->  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
2725, 26ax-mp 7 . . . . . . 7  |-  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )
28 ssralv 3083 . . . . . . . . 9  |-  ( dom  ( A  |`  B ) 
C_  dom  A  ->  ( A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  ->  A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
2925, 28ax-mp 7 . . . . . . . 8  |-  ( A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) )  ->  A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )
3029ralimi 2438 . . . . . . 7  |-  ( A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) )
3127, 30syl 14 . . . . . 6  |-  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )
32 inss1 3218 . . . . . . . . . . . . 13  |-  ( B  i^i  dom  A )  C_  B
3320, 32eqsstri 3054 . . . . . . . . . . . 12  |-  dom  ( A  |`  B )  C_  B
34 simpl 107 . . . . . . . . . . . 12  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  ->  x  e.  dom  ( A  |`  B ) )
3533, 34sseldi 3021 . . . . . . . . . . 11  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  ->  x  e.  B )
36 fvres 5313 . . . . . . . . . . 11  |-  ( x  e.  B  ->  (
( A  |`  B ) `
 x )  =  ( A `  x
) )
3735, 36syl 14 . . . . . . . . . 10  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
( ( A  |`  B ) `  x
)  =  ( A `
 x ) )
38 simpr 108 . . . . . . . . . . . 12  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
y  e.  dom  ( A  |`  B ) )
3933, 38sseldi 3021 . . . . . . . . . . 11  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
y  e.  B )
40 fvres 5313 . . . . . . . . . . 11  |-  ( y  e.  B  ->  (
( A  |`  B ) `
 y )  =  ( A `  y
) )
4139, 40syl 14 . . . . . . . . . 10  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
( ( A  |`  B ) `  y
)  =  ( A `
 y ) )
4237, 41eleq12d 2158 . . . . . . . . 9  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
( ( ( A  |`  B ) `  x
)  e.  ( ( A  |`  B ) `  y )  <->  ( A `  x )  e.  ( A `  y ) ) )
4342imbi2d 228 . . . . . . . 8  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
( ( x  e.  y  ->  ( ( A  |`  B ) `  x )  e.  ( ( A  |`  B ) `
 y ) )  <-> 
( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) ) )
4443ralbidva 2376 . . . . . . 7  |-  ( x  e.  dom  ( A  |`  B )  ->  ( A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( ( A  |`  B ) `  x
)  e.  ( ( A  |`  B ) `  y ) )  <->  A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
4544ralbiia 2392 . . . . . 6  |-  ( A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  (
( A  |`  B ) `
 x )  e.  ( ( A  |`  B ) `  y
) )  <->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) )
4631, 45sylibr 132 . . . . 5  |-  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( ( A  |`  B ) `  x
)  e.  ( ( A  |`  B ) `  y ) ) )
4746a1i 9 . . . 4  |-  ( B  e.  dom  A  -> 
( A. x  e. 
dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  (
( A  |`  B ) `
 x )  e.  ( ( A  |`  B ) `  y
) ) ) )
4814, 23, 473anim123d 1255 . . 3  |-  ( B  e.  dom  A  -> 
( ( A : dom  A --> On  /\  Ord  dom 
A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) )  -> 
( ( A  |`  B ) : dom  ( A  |`  B ) --> On  /\  Ord  dom  ( A  |`  B )  /\  A. x  e. 
dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  (
( A  |`  B ) `
 x )  e.  ( ( A  |`  B ) `  y
) ) ) ) )
49 df-smo 6033 . . 3  |-  ( Smo 
A  <->  ( A : dom  A --> On  /\  Ord  dom 
A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
50 df-smo 6033 . . 3  |-  ( Smo  ( A  |`  B )  <-> 
( ( A  |`  B ) : dom  ( A  |`  B ) --> On  /\  Ord  dom  ( A  |`  B )  /\  A. x  e. 
dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  (
( A  |`  B ) `
 x )  e.  ( ( A  |`  B ) `  y
) ) ) )
5148, 49, 503imtr4g 203 . 2  |-  ( B  e.  dom  A  -> 
( Smo  A  ->  Smo  ( A  |`  B ) ) )
5251impcom 123 1  |-  ( ( Smo  A  /\  B  e.  dom  A )  ->  Smo  ( A  |`  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 924    = wceq 1289    e. wcel 1438   A.wral 2359    i^i cin 2996    C_ wss 2997   Ord word 4180   Oncon0 4181   dom cdm 4428   ran crn 4429    |` cres 4430   Fun wfun 4996    Fn wfn 4997   -->wf 4998   ` cfv 5002   Smo wsmo 6032
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-tr 3929  df-iord 4184  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010  df-smo 6033
This theorem is referenced by:  smores3  6040
  Copyright terms: Public domain W3C validator