Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > smores | Unicode version |
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
Ref | Expression |
---|---|
smores |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres 5239 | . . . . . . . 8 | |
2 | funfn 5228 | . . . . . . . 8 | |
3 | funfn 5228 | . . . . . . . 8 | |
4 | 1, 2, 3 | 3imtr3i 199 | . . . . . . 7 |
5 | resss 4915 | . . . . . . . . 9 | |
6 | rnss 4841 | . . . . . . . . 9 | |
7 | 5, 6 | ax-mp 5 | . . . . . . . 8 |
8 | sstr 3155 | . . . . . . . 8 | |
9 | 7, 8 | mpan 422 | . . . . . . 7 |
10 | 4, 9 | anim12i 336 | . . . . . 6 |
11 | df-f 5202 | . . . . . 6 | |
12 | df-f 5202 | . . . . . 6 | |
13 | 10, 11, 12 | 3imtr4i 200 | . . . . 5 |
14 | 13 | a1i 9 | . . . 4 |
15 | ordelord 4366 | . . . . . . 7 | |
16 | 15 | expcom 115 | . . . . . 6 |
17 | ordin 4370 | . . . . . . 7 | |
18 | 17 | ex 114 | . . . . . 6 |
19 | 16, 18 | syli 37 | . . . . 5 |
20 | dmres 4912 | . . . . . 6 | |
21 | ordeq 4357 | . . . . . 6 | |
22 | 20, 21 | ax-mp 5 | . . . . 5 |
23 | 19, 22 | syl6ibr 161 | . . . 4 |
24 | dmss 4810 | . . . . . . . . 9 | |
25 | 5, 24 | ax-mp 5 | . . . . . . . 8 |
26 | ssralv 3211 | . . . . . . . 8 | |
27 | 25, 26 | ax-mp 5 | . . . . . . 7 |
28 | ssralv 3211 | . . . . . . . . 9 | |
29 | 25, 28 | ax-mp 5 | . . . . . . . 8 |
30 | 29 | ralimi 2533 | . . . . . . 7 |
31 | 27, 30 | syl 14 | . . . . . 6 |
32 | inss1 3347 | . . . . . . . . . . . . 13 | |
33 | 20, 32 | eqsstri 3179 | . . . . . . . . . . . 12 |
34 | simpl 108 | . . . . . . . . . . . 12 | |
35 | 33, 34 | sselid 3145 | . . . . . . . . . . 11 |
36 | fvres 5520 | . . . . . . . . . . 11 | |
37 | 35, 36 | syl 14 | . . . . . . . . . 10 |
38 | simpr 109 | . . . . . . . . . . . 12 | |
39 | 33, 38 | sselid 3145 | . . . . . . . . . . 11 |
40 | fvres 5520 | . . . . . . . . . . 11 | |
41 | 39, 40 | syl 14 | . . . . . . . . . 10 |
42 | 37, 41 | eleq12d 2241 | . . . . . . . . 9 |
43 | 42 | imbi2d 229 | . . . . . . . 8 |
44 | 43 | ralbidva 2466 | . . . . . . 7 |
45 | 44 | ralbiia 2484 | . . . . . 6 |
46 | 31, 45 | sylibr 133 | . . . . 5 |
47 | 46 | a1i 9 | . . . 4 |
48 | 14, 23, 47 | 3anim123d 1314 | . . 3 |
49 | df-smo 6265 | . . 3 | |
50 | df-smo 6265 | . . 3 | |
51 | 48, 49, 50 | 3imtr4g 204 | . 2 |
52 | 51 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 cin 3120 wss 3121 word 4347 con0 4348 cdm 4611 crn 4612 cres 4613 wfun 5192 wfn 5193 wf 5194 cfv 5198 wsmo 6264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-tr 4088 df-iord 4351 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-smo 6265 |
This theorem is referenced by: smores3 6272 |
Copyright terms: Public domain | W3C validator |