Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > smores | Unicode version |
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
Ref | Expression |
---|---|
smores |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres 5229 | . . . . . . . 8 | |
2 | funfn 5218 | . . . . . . . 8 | |
3 | funfn 5218 | . . . . . . . 8 | |
4 | 1, 2, 3 | 3imtr3i 199 | . . . . . . 7 |
5 | resss 4908 | . . . . . . . . 9 | |
6 | rnss 4834 | . . . . . . . . 9 | |
7 | 5, 6 | ax-mp 5 | . . . . . . . 8 |
8 | sstr 3150 | . . . . . . . 8 | |
9 | 7, 8 | mpan 421 | . . . . . . 7 |
10 | 4, 9 | anim12i 336 | . . . . . 6 |
11 | df-f 5192 | . . . . . 6 | |
12 | df-f 5192 | . . . . . 6 | |
13 | 10, 11, 12 | 3imtr4i 200 | . . . . 5 |
14 | 13 | a1i 9 | . . . 4 |
15 | ordelord 4359 | . . . . . . 7 | |
16 | 15 | expcom 115 | . . . . . 6 |
17 | ordin 4363 | . . . . . . 7 | |
18 | 17 | ex 114 | . . . . . 6 |
19 | 16, 18 | syli 37 | . . . . 5 |
20 | dmres 4905 | . . . . . 6 | |
21 | ordeq 4350 | . . . . . 6 | |
22 | 20, 21 | ax-mp 5 | . . . . 5 |
23 | 19, 22 | syl6ibr 161 | . . . 4 |
24 | dmss 4803 | . . . . . . . . 9 | |
25 | 5, 24 | ax-mp 5 | . . . . . . . 8 |
26 | ssralv 3206 | . . . . . . . 8 | |
27 | 25, 26 | ax-mp 5 | . . . . . . 7 |
28 | ssralv 3206 | . . . . . . . . 9 | |
29 | 25, 28 | ax-mp 5 | . . . . . . . 8 |
30 | 29 | ralimi 2529 | . . . . . . 7 |
31 | 27, 30 | syl 14 | . . . . . 6 |
32 | inss1 3342 | . . . . . . . . . . . . 13 | |
33 | 20, 32 | eqsstri 3174 | . . . . . . . . . . . 12 |
34 | simpl 108 | . . . . . . . . . . . 12 | |
35 | 33, 34 | sselid 3140 | . . . . . . . . . . 11 |
36 | fvres 5510 | . . . . . . . . . . 11 | |
37 | 35, 36 | syl 14 | . . . . . . . . . 10 |
38 | simpr 109 | . . . . . . . . . . . 12 | |
39 | 33, 38 | sselid 3140 | . . . . . . . . . . 11 |
40 | fvres 5510 | . . . . . . . . . . 11 | |
41 | 39, 40 | syl 14 | . . . . . . . . . 10 |
42 | 37, 41 | eleq12d 2237 | . . . . . . . . 9 |
43 | 42 | imbi2d 229 | . . . . . . . 8 |
44 | 43 | ralbidva 2462 | . . . . . . 7 |
45 | 44 | ralbiia 2480 | . . . . . 6 |
46 | 31, 45 | sylibr 133 | . . . . 5 |
47 | 46 | a1i 9 | . . . 4 |
48 | 14, 23, 47 | 3anim123d 1309 | . . 3 |
49 | df-smo 6254 | . . 3 | |
50 | df-smo 6254 | . . 3 | |
51 | 48, 49, 50 | 3imtr4g 204 | . 2 |
52 | 51 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wral 2444 cin 3115 wss 3116 word 4340 con0 4341 cdm 4604 crn 4605 cres 4606 wfun 5182 wfn 5183 wf 5184 cfv 5188 wsmo 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-tr 4081 df-iord 4344 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-smo 6254 |
This theorem is referenced by: smores3 6261 |
Copyright terms: Public domain | W3C validator |