ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smores Unicode version

Theorem smores 6271
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
smores  |-  ( ( Smo  A  /\  B  e.  dom  A )  ->  Smo  ( A  |`  B ) )

Proof of Theorem smores
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funres 5239 . . . . . . . 8  |-  ( Fun 
A  ->  Fun  ( A  |`  B ) )
2 funfn 5228 . . . . . . . 8  |-  ( Fun 
A  <->  A  Fn  dom  A )
3 funfn 5228 . . . . . . . 8  |-  ( Fun  ( A  |`  B )  <-> 
( A  |`  B )  Fn  dom  ( A  |`  B ) )
41, 2, 33imtr3i 199 . . . . . . 7  |-  ( A  Fn  dom  A  -> 
( A  |`  B )  Fn  dom  ( A  |`  B ) )
5 resss 4915 . . . . . . . . 9  |-  ( A  |`  B )  C_  A
6 rnss 4841 . . . . . . . . 9  |-  ( ( A  |`  B )  C_  A  ->  ran  ( A  |`  B )  C_  ran  A )
75, 6ax-mp 5 . . . . . . . 8  |-  ran  ( A  |`  B )  C_  ran  A
8 sstr 3155 . . . . . . . 8  |-  ( ( ran  ( A  |`  B )  C_  ran  A  /\  ran  A  C_  On )  ->  ran  ( A  |`  B )  C_  On )
97, 8mpan 422 . . . . . . 7  |-  ( ran 
A  C_  On  ->  ran  ( A  |`  B ) 
C_  On )
104, 9anim12i 336 . . . . . 6  |-  ( ( A  Fn  dom  A  /\  ran  A  C_  On )  ->  ( ( A  |`  B )  Fn  dom  ( A  |`  B )  /\  ran  ( A  |`  B )  C_  On ) )
11 df-f 5202 . . . . . 6  |-  ( A : dom  A --> On  <->  ( A  Fn  dom  A  /\  ran  A 
C_  On ) )
12 df-f 5202 . . . . . 6  |-  ( ( A  |`  B ) : dom  ( A  |`  B ) --> On  <->  ( ( A  |`  B )  Fn 
dom  ( A  |`  B )  /\  ran  ( A  |`  B ) 
C_  On ) )
1310, 11, 123imtr4i 200 . . . . 5  |-  ( A : dom  A --> On  ->  ( A  |`  B ) : dom  ( A  |`  B ) --> On )
1413a1i 9 . . . 4  |-  ( B  e.  dom  A  -> 
( A : dom  A --> On  ->  ( A  |`  B ) : dom  ( A  |`  B ) --> On ) )
15 ordelord 4366 . . . . . . 7  |-  ( ( Ord  dom  A  /\  B  e.  dom  A )  ->  Ord  B )
1615expcom 115 . . . . . 6  |-  ( B  e.  dom  A  -> 
( Ord  dom  A  ->  Ord  B ) )
17 ordin 4370 . . . . . . 7  |-  ( ( Ord  B  /\  Ord  dom 
A )  ->  Ord  ( B  i^i  dom  A
) )
1817ex 114 . . . . . 6  |-  ( Ord 
B  ->  ( Ord  dom 
A  ->  Ord  ( B  i^i  dom  A )
) )
1916, 18syli 37 . . . . 5  |-  ( B  e.  dom  A  -> 
( Ord  dom  A  ->  Ord  ( B  i^i  dom  A ) ) )
20 dmres 4912 . . . . . 6  |-  dom  ( A  |`  B )  =  ( B  i^i  dom  A )
21 ordeq 4357 . . . . . 6  |-  ( dom  ( A  |`  B )  =  ( B  i^i  dom 
A )  ->  ( Ord  dom  ( A  |`  B )  <->  Ord  ( B  i^i  dom  A )
) )
2220, 21ax-mp 5 . . . . 5  |-  ( Ord 
dom  ( A  |`  B )  <->  Ord  ( B  i^i  dom  A )
)
2319, 22syl6ibr 161 . . . 4  |-  ( B  e.  dom  A  -> 
( Ord  dom  A  ->  Ord  dom  ( A  |`  B ) ) )
24 dmss 4810 . . . . . . . . 9  |-  ( ( A  |`  B )  C_  A  ->  dom  ( A  |`  B )  C_  dom  A )
255, 24ax-mp 5 . . . . . . . 8  |-  dom  ( A  |`  B )  C_  dom  A
26 ssralv 3211 . . . . . . . 8  |-  ( dom  ( A  |`  B ) 
C_  dom  A  ->  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
2725, 26ax-mp 5 . . . . . . 7  |-  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )
28 ssralv 3211 . . . . . . . . 9  |-  ( dom  ( A  |`  B ) 
C_  dom  A  ->  ( A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  ->  A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
2925, 28ax-mp 5 . . . . . . . 8  |-  ( A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) )  ->  A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )
3029ralimi 2533 . . . . . . 7  |-  ( A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) )
3127, 30syl 14 . . . . . 6  |-  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )
32 inss1 3347 . . . . . . . . . . . . 13  |-  ( B  i^i  dom  A )  C_  B
3320, 32eqsstri 3179 . . . . . . . . . . . 12  |-  dom  ( A  |`  B )  C_  B
34 simpl 108 . . . . . . . . . . . 12  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  ->  x  e.  dom  ( A  |`  B ) )
3533, 34sselid 3145 . . . . . . . . . . 11  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  ->  x  e.  B )
36 fvres 5520 . . . . . . . . . . 11  |-  ( x  e.  B  ->  (
( A  |`  B ) `
 x )  =  ( A `  x
) )
3735, 36syl 14 . . . . . . . . . 10  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
( ( A  |`  B ) `  x
)  =  ( A `
 x ) )
38 simpr 109 . . . . . . . . . . . 12  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
y  e.  dom  ( A  |`  B ) )
3933, 38sselid 3145 . . . . . . . . . . 11  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
y  e.  B )
40 fvres 5520 . . . . . . . . . . 11  |-  ( y  e.  B  ->  (
( A  |`  B ) `
 y )  =  ( A `  y
) )
4139, 40syl 14 . . . . . . . . . 10  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
( ( A  |`  B ) `  y
)  =  ( A `
 y ) )
4237, 41eleq12d 2241 . . . . . . . . 9  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
( ( ( A  |`  B ) `  x
)  e.  ( ( A  |`  B ) `  y )  <->  ( A `  x )  e.  ( A `  y ) ) )
4342imbi2d 229 . . . . . . . 8  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
( ( x  e.  y  ->  ( ( A  |`  B ) `  x )  e.  ( ( A  |`  B ) `
 y ) )  <-> 
( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) ) )
4443ralbidva 2466 . . . . . . 7  |-  ( x  e.  dom  ( A  |`  B )  ->  ( A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( ( A  |`  B ) `  x
)  e.  ( ( A  |`  B ) `  y ) )  <->  A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
4544ralbiia 2484 . . . . . 6  |-  ( A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  (
( A  |`  B ) `
 x )  e.  ( ( A  |`  B ) `  y
) )  <->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) )
4631, 45sylibr 133 . . . . 5  |-  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( ( A  |`  B ) `  x
)  e.  ( ( A  |`  B ) `  y ) ) )
4746a1i 9 . . . 4  |-  ( B  e.  dom  A  -> 
( A. x  e. 
dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  (
( A  |`  B ) `
 x )  e.  ( ( A  |`  B ) `  y
) ) ) )
4814, 23, 473anim123d 1314 . . 3  |-  ( B  e.  dom  A  -> 
( ( A : dom  A --> On  /\  Ord  dom 
A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) )  -> 
( ( A  |`  B ) : dom  ( A  |`  B ) --> On  /\  Ord  dom  ( A  |`  B )  /\  A. x  e. 
dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  (
( A  |`  B ) `
 x )  e.  ( ( A  |`  B ) `  y
) ) ) ) )
49 df-smo 6265 . . 3  |-  ( Smo 
A  <->  ( A : dom  A --> On  /\  Ord  dom 
A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
50 df-smo 6265 . . 3  |-  ( Smo  ( A  |`  B )  <-> 
( ( A  |`  B ) : dom  ( A  |`  B ) --> On  /\  Ord  dom  ( A  |`  B )  /\  A. x  e. 
dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  (
( A  |`  B ) `
 x )  e.  ( ( A  |`  B ) `  y
) ) ) )
5148, 49, 503imtr4g 204 . 2  |-  ( B  e.  dom  A  -> 
( Smo  A  ->  Smo  ( A  |`  B ) ) )
5251impcom 124 1  |-  ( ( Smo  A  /\  B  e.  dom  A )  ->  Smo  ( A  |`  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448    i^i cin 3120    C_ wss 3121   Ord word 4347   Oncon0 4348   dom cdm 4611   ran crn 4612    |` cres 4613   Fun wfun 5192    Fn wfn 5193   -->wf 5194   ` cfv 5198   Smo wsmo 6264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-tr 4088  df-iord 4351  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-smo 6265
This theorem is referenced by:  smores3  6272
  Copyright terms: Public domain W3C validator