| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > smores | Unicode version | ||
| Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
| Ref | Expression |
|---|---|
| smores |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres 5331 |
. . . . . . . 8
| |
| 2 | funfn 5320 |
. . . . . . . 8
| |
| 3 | funfn 5320 |
. . . . . . . 8
| |
| 4 | 1, 2, 3 | 3imtr3i 200 |
. . . . . . 7
|
| 5 | resss 5002 |
. . . . . . . . 9
| |
| 6 | rnss 4927 |
. . . . . . . . 9
| |
| 7 | 5, 6 | ax-mp 5 |
. . . . . . . 8
|
| 8 | sstr 3209 |
. . . . . . . 8
| |
| 9 | 7, 8 | mpan 424 |
. . . . . . 7
|
| 10 | 4, 9 | anim12i 338 |
. . . . . 6
|
| 11 | df-f 5294 |
. . . . . 6
| |
| 12 | df-f 5294 |
. . . . . 6
| |
| 13 | 10, 11, 12 | 3imtr4i 201 |
. . . . 5
|
| 14 | 13 | a1i 9 |
. . . 4
|
| 15 | ordelord 4446 |
. . . . . . 7
| |
| 16 | 15 | expcom 116 |
. . . . . 6
|
| 17 | ordin 4450 |
. . . . . . 7
| |
| 18 | 17 | ex 115 |
. . . . . 6
|
| 19 | 16, 18 | syli 37 |
. . . . 5
|
| 20 | dmres 4999 |
. . . . . 6
| |
| 21 | ordeq 4437 |
. . . . . 6
| |
| 22 | 20, 21 | ax-mp 5 |
. . . . 5
|
| 23 | 19, 22 | imbitrrdi 162 |
. . . 4
|
| 24 | dmss 4896 |
. . . . . . . . 9
| |
| 25 | 5, 24 | ax-mp 5 |
. . . . . . . 8
|
| 26 | ssralv 3265 |
. . . . . . . 8
| |
| 27 | 25, 26 | ax-mp 5 |
. . . . . . 7
|
| 28 | ssralv 3265 |
. . . . . . . . 9
| |
| 29 | 25, 28 | ax-mp 5 |
. . . . . . . 8
|
| 30 | 29 | ralimi 2571 |
. . . . . . 7
|
| 31 | 27, 30 | syl 14 |
. . . . . 6
|
| 32 | inss1 3401 |
. . . . . . . . . . . . 13
| |
| 33 | 20, 32 | eqsstri 3233 |
. . . . . . . . . . . 12
|
| 34 | simpl 109 |
. . . . . . . . . . . 12
| |
| 35 | 33, 34 | sselid 3199 |
. . . . . . . . . . 11
|
| 36 | fvres 5623 |
. . . . . . . . . . 11
| |
| 37 | 35, 36 | syl 14 |
. . . . . . . . . 10
|
| 38 | simpr 110 |
. . . . . . . . . . . 12
| |
| 39 | 33, 38 | sselid 3199 |
. . . . . . . . . . 11
|
| 40 | fvres 5623 |
. . . . . . . . . . 11
| |
| 41 | 39, 40 | syl 14 |
. . . . . . . . . 10
|
| 42 | 37, 41 | eleq12d 2278 |
. . . . . . . . 9
|
| 43 | 42 | imbi2d 230 |
. . . . . . . 8
|
| 44 | 43 | ralbidva 2504 |
. . . . . . 7
|
| 45 | 44 | ralbiia 2522 |
. . . . . 6
|
| 46 | 31, 45 | sylibr 134 |
. . . . 5
|
| 47 | 46 | a1i 9 |
. . . 4
|
| 48 | 14, 23, 47 | 3anim123d 1332 |
. . 3
|
| 49 | df-smo 6395 |
. . 3
| |
| 50 | df-smo 6395 |
. . 3
| |
| 51 | 48, 49, 50 | 3imtr4g 205 |
. 2
|
| 52 | 51 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-tr 4159 df-iord 4431 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-smo 6395 |
| This theorem is referenced by: smores3 6402 |
| Copyright terms: Public domain | W3C validator |