Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > smores2 | Unicode version |
Description: A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013.) |
Ref | Expression |
---|---|
smores2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsmo2 6255 | . . . . . . 7 | |
2 | 1 | simp1bi 1002 | . . . . . 6 |
3 | ffun 5340 | . . . . . 6 | |
4 | 2, 3 | syl 14 | . . . . 5 |
5 | funres 5229 | . . . . . 6 | |
6 | funfn 5218 | . . . . . 6 | |
7 | 5, 6 | sylib 121 | . . . . 5 |
8 | 4, 7 | syl 14 | . . . 4 |
9 | df-ima 4617 | . . . . . 6 | |
10 | imassrn 4957 | . . . . . 6 | |
11 | 9, 10 | eqsstrri 3175 | . . . . 5 |
12 | frn 5346 | . . . . . 6 | |
13 | 2, 12 | syl 14 | . . . . 5 |
14 | 11, 13 | sstrid 3153 | . . . 4 |
15 | df-f 5192 | . . . 4 | |
16 | 8, 14, 15 | sylanbrc 414 | . . 3 |
17 | 16 | adantr 274 | . 2 |
18 | smodm 6259 | . . 3 | |
19 | ordin 4363 | . . . . 5 | |
20 | dmres 4905 | . . . . . 6 | |
21 | ordeq 4350 | . . . . . 6 | |
22 | 20, 21 | ax-mp 5 | . . . . 5 |
23 | 19, 22 | sylibr 133 | . . . 4 |
24 | 23 | ancoms 266 | . . 3 |
25 | 18, 24 | sylan 281 | . 2 |
26 | resss 4908 | . . . . . 6 | |
27 | dmss 4803 | . . . . . 6 | |
28 | 26, 27 | ax-mp 5 | . . . . 5 |
29 | 1 | simp3bi 1004 | . . . . 5 |
30 | ssralv 3206 | . . . . 5 | |
31 | 28, 29, 30 | mpsyl 65 | . . . 4 |
32 | 31 | adantr 274 | . . 3 |
33 | ordtr1 4366 | . . . . . . . . . . 11 | |
34 | 25, 33 | syl 14 | . . . . . . . . . 10 |
35 | inss1 3342 | . . . . . . . . . . . 12 | |
36 | 20, 35 | eqsstri 3174 | . . . . . . . . . . 11 |
37 | 36 | sseli 3138 | . . . . . . . . . 10 |
38 | 34, 37 | syl6 33 | . . . . . . . . 9 |
39 | 38 | expcomd 1429 | . . . . . . . 8 |
40 | 39 | imp31 254 | . . . . . . 7 |
41 | fvres 5510 | . . . . . . 7 | |
42 | 40, 41 | syl 14 | . . . . . 6 |
43 | 36 | sseli 3138 | . . . . . . . 8 |
44 | fvres 5510 | . . . . . . . 8 | |
45 | 43, 44 | syl 14 | . . . . . . 7 |
46 | 45 | ad2antlr 481 | . . . . . 6 |
47 | 42, 46 | eleq12d 2237 | . . . . 5 |
48 | 47 | ralbidva 2462 | . . . 4 |
49 | 48 | ralbidva 2462 | . . 3 |
50 | 32, 49 | mpbird 166 | . 2 |
51 | dfsmo2 6255 | . 2 | |
52 | 17, 25, 50, 51 | syl3anbrc 1171 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 cin 3115 wss 3116 word 4340 con0 4341 cdm 4604 crn 4605 cres 4606 cima 4607 wfun 5182 wfn 5183 wf 5184 cfv 5188 wsmo 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-tr 4081 df-iord 4344 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-smo 6254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |