| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > smores2 | Unicode version | ||
| Description: A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013.) |
| Ref | Expression |
|---|---|
| smores2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsmo2 6433 |
. . . . . . 7
| |
| 2 | 1 | simp1bi 1036 |
. . . . . 6
|
| 3 | ffun 5476 |
. . . . . 6
| |
| 4 | 2, 3 | syl 14 |
. . . . 5
|
| 5 | funres 5359 |
. . . . . 6
| |
| 6 | funfn 5348 |
. . . . . 6
| |
| 7 | 5, 6 | sylib 122 |
. . . . 5
|
| 8 | 4, 7 | syl 14 |
. . . 4
|
| 9 | df-ima 4732 |
. . . . . 6
| |
| 10 | imassrn 5079 |
. . . . . 6
| |
| 11 | 9, 10 | eqsstrri 3257 |
. . . . 5
|
| 12 | frn 5482 |
. . . . . 6
| |
| 13 | 2, 12 | syl 14 |
. . . . 5
|
| 14 | 11, 13 | sstrid 3235 |
. . . 4
|
| 15 | df-f 5322 |
. . . 4
| |
| 16 | 8, 14, 15 | sylanbrc 417 |
. . 3
|
| 17 | 16 | adantr 276 |
. 2
|
| 18 | smodm 6437 |
. . 3
| |
| 19 | ordin 4476 |
. . . . 5
| |
| 20 | dmres 5026 |
. . . . . 6
| |
| 21 | ordeq 4463 |
. . . . . 6
| |
| 22 | 20, 21 | ax-mp 5 |
. . . . 5
|
| 23 | 19, 22 | sylibr 134 |
. . . 4
|
| 24 | 23 | ancoms 268 |
. . 3
|
| 25 | 18, 24 | sylan 283 |
. 2
|
| 26 | resss 5029 |
. . . . . 6
| |
| 27 | dmss 4922 |
. . . . . 6
| |
| 28 | 26, 27 | ax-mp 5 |
. . . . 5
|
| 29 | 1 | simp3bi 1038 |
. . . . 5
|
| 30 | ssralv 3288 |
. . . . 5
| |
| 31 | 28, 29, 30 | mpsyl 65 |
. . . 4
|
| 32 | 31 | adantr 276 |
. . 3
|
| 33 | ordtr1 4479 |
. . . . . . . . . . 11
| |
| 34 | 25, 33 | syl 14 |
. . . . . . . . . 10
|
| 35 | inss1 3424 |
. . . . . . . . . . . 12
| |
| 36 | 20, 35 | eqsstri 3256 |
. . . . . . . . . . 11
|
| 37 | 36 | sseli 3220 |
. . . . . . . . . 10
|
| 38 | 34, 37 | syl6 33 |
. . . . . . . . 9
|
| 39 | 38 | expcomd 1484 |
. . . . . . . 8
|
| 40 | 39 | imp31 256 |
. . . . . . 7
|
| 41 | fvres 5651 |
. . . . . . 7
| |
| 42 | 40, 41 | syl 14 |
. . . . . 6
|
| 43 | 36 | sseli 3220 |
. . . . . . . 8
|
| 44 | fvres 5651 |
. . . . . . . 8
| |
| 45 | 43, 44 | syl 14 |
. . . . . . 7
|
| 46 | 45 | ad2antlr 489 |
. . . . . 6
|
| 47 | 42, 46 | eleq12d 2300 |
. . . . 5
|
| 48 | 47 | ralbidva 2526 |
. . . 4
|
| 49 | 48 | ralbidva 2526 |
. . 3
|
| 50 | 32, 49 | mpbird 167 |
. 2
|
| 51 | dfsmo2 6433 |
. 2
| |
| 52 | 17, 25, 50, 51 | syl3anbrc 1205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-tr 4183 df-iord 4457 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-smo 6432 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |