ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smores2 Unicode version

Theorem smores2 6199
Description: A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013.)
Assertion
Ref Expression
smores2  |-  ( ( Smo  F  /\  Ord  A )  ->  Smo  ( F  |`  A ) )

Proof of Theorem smores2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsmo2 6192 . . . . . . 7  |-  ( Smo 
F  <->  ( F : dom  F --> On  /\  Ord  dom 
F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
21simp1bi 997 . . . . . 6  |-  ( Smo 
F  ->  F : dom  F --> On )
3 ffun 5283 . . . . . 6  |-  ( F : dom  F --> On  ->  Fun 
F )
42, 3syl 14 . . . . 5  |-  ( Smo 
F  ->  Fun  F )
5 funres 5172 . . . . . 6  |-  ( Fun 
F  ->  Fun  ( F  |`  A ) )
6 funfn 5161 . . . . . 6  |-  ( Fun  ( F  |`  A )  <-> 
( F  |`  A )  Fn  dom  ( F  |`  A ) )
75, 6sylib 121 . . . . 5  |-  ( Fun 
F  ->  ( F  |`  A )  Fn  dom  ( F  |`  A ) )
84, 7syl 14 . . . 4  |-  ( Smo 
F  ->  ( F  |`  A )  Fn  dom  ( F  |`  A ) )
9 df-ima 4560 . . . . . 6  |-  ( F
" A )  =  ran  ( F  |`  A )
10 imassrn 4900 . . . . . 6  |-  ( F
" A )  C_  ran  F
119, 10eqsstrri 3135 . . . . 5  |-  ran  ( F  |`  A )  C_  ran  F
12 frn 5289 . . . . . 6  |-  ( F : dom  F --> On  ->  ran 
F  C_  On )
132, 12syl 14 . . . . 5  |-  ( Smo 
F  ->  ran  F  C_  On )
1411, 13sstrid 3113 . . . 4  |-  ( Smo 
F  ->  ran  ( F  |`  A )  C_  On )
15 df-f 5135 . . . 4  |-  ( ( F  |`  A ) : dom  ( F  |`  A ) --> On  <->  ( ( F  |`  A )  Fn 
dom  ( F  |`  A )  /\  ran  ( F  |`  A ) 
C_  On ) )
168, 14, 15sylanbrc 414 . . 3  |-  ( Smo 
F  ->  ( F  |`  A ) : dom  ( F  |`  A ) --> On )
1716adantr 274 . 2  |-  ( ( Smo  F  /\  Ord  A )  ->  ( F  |`  A ) : dom  ( F  |`  A ) --> On )
18 smodm 6196 . . 3  |-  ( Smo 
F  ->  Ord  dom  F
)
19 ordin 4315 . . . . 5  |-  ( ( Ord  A  /\  Ord  dom 
F )  ->  Ord  ( A  i^i  dom  F
) )
20 dmres 4848 . . . . . 6  |-  dom  ( F  |`  A )  =  ( A  i^i  dom  F )
21 ordeq 4302 . . . . . 6  |-  ( dom  ( F  |`  A )  =  ( A  i^i  dom 
F )  ->  ( Ord  dom  ( F  |`  A )  <->  Ord  ( A  i^i  dom  F )
) )
2220, 21ax-mp 5 . . . . 5  |-  ( Ord 
dom  ( F  |`  A )  <->  Ord  ( A  i^i  dom  F )
)
2319, 22sylibr 133 . . . 4  |-  ( ( Ord  A  /\  Ord  dom 
F )  ->  Ord  dom  ( F  |`  A ) )
2423ancoms 266 . . 3  |-  ( ( Ord  dom  F  /\  Ord  A )  ->  Ord  dom  ( F  |`  A ) )
2518, 24sylan 281 . 2  |-  ( ( Smo  F  /\  Ord  A )  ->  Ord  dom  ( F  |`  A ) )
26 resss 4851 . . . . . 6  |-  ( F  |`  A )  C_  F
27 dmss 4746 . . . . . 6  |-  ( ( F  |`  A )  C_  F  ->  dom  ( F  |`  A )  C_  dom  F )
2826, 27ax-mp 5 . . . . 5  |-  dom  ( F  |`  A )  C_  dom  F
291simp3bi 999 . . . . 5  |-  ( Smo 
F  ->  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) )
30 ssralv 3166 . . . . 5  |-  ( dom  ( F  |`  A ) 
C_  dom  F  ->  ( A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x )  ->  A. x  e.  dom  ( F  |`  A ) A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
3128, 29, 30mpsyl 65 . . . 4  |-  ( Smo 
F  ->  A. x  e.  dom  ( F  |`  A ) A. y  e.  x  ( F `  y )  e.  ( F `  x ) )
3231adantr 274 . . 3  |-  ( ( Smo  F  /\  Ord  A )  ->  A. x  e.  dom  ( F  |`  A ) A. y  e.  x  ( F `  y )  e.  ( F `  x ) )
33 ordtr1 4318 . . . . . . . . . . 11  |-  ( Ord 
dom  ( F  |`  A )  ->  (
( y  e.  x  /\  x  e.  dom  ( F  |`  A ) )  ->  y  e.  dom  ( F  |`  A ) ) )
3425, 33syl 14 . . . . . . . . . 10  |-  ( ( Smo  F  /\  Ord  A )  ->  ( (
y  e.  x  /\  x  e.  dom  ( F  |`  A ) )  -> 
y  e.  dom  ( F  |`  A ) ) )
35 inss1 3301 . . . . . . . . . . . 12  |-  ( A  i^i  dom  F )  C_  A
3620, 35eqsstri 3134 . . . . . . . . . . 11  |-  dom  ( F  |`  A )  C_  A
3736sseli 3098 . . . . . . . . . 10  |-  ( y  e.  dom  ( F  |`  A )  ->  y  e.  A )
3834, 37syl6 33 . . . . . . . . 9  |-  ( ( Smo  F  /\  Ord  A )  ->  ( (
y  e.  x  /\  x  e.  dom  ( F  |`  A ) )  -> 
y  e.  A ) )
3938expcomd 1418 . . . . . . . 8  |-  ( ( Smo  F  /\  Ord  A )  ->  ( x  e.  dom  ( F  |`  A )  ->  (
y  e.  x  -> 
y  e.  A ) ) )
4039imp31 254 . . . . . . 7  |-  ( ( ( ( Smo  F  /\  Ord  A )  /\  x  e.  dom  ( F  |`  A ) )  /\  y  e.  x )  ->  y  e.  A )
41 fvres 5453 . . . . . . 7  |-  ( y  e.  A  ->  (
( F  |`  A ) `
 y )  =  ( F `  y
) )
4240, 41syl 14 . . . . . 6  |-  ( ( ( ( Smo  F  /\  Ord  A )  /\  x  e.  dom  ( F  |`  A ) )  /\  y  e.  x )  ->  ( ( F  |`  A ) `  y
)  =  ( F `
 y ) )
4336sseli 3098 . . . . . . . 8  |-  ( x  e.  dom  ( F  |`  A )  ->  x  e.  A )
44 fvres 5453 . . . . . . . 8  |-  ( x  e.  A  ->  (
( F  |`  A ) `
 x )  =  ( F `  x
) )
4543, 44syl 14 . . . . . . 7  |-  ( x  e.  dom  ( F  |`  A )  ->  (
( F  |`  A ) `
 x )  =  ( F `  x
) )
4645ad2antlr 481 . . . . . 6  |-  ( ( ( ( Smo  F  /\  Ord  A )  /\  x  e.  dom  ( F  |`  A ) )  /\  y  e.  x )  ->  ( ( F  |`  A ) `  x
)  =  ( F `
 x ) )
4742, 46eleq12d 2211 . . . . 5  |-  ( ( ( ( Smo  F  /\  Ord  A )  /\  x  e.  dom  ( F  |`  A ) )  /\  y  e.  x )  ->  ( ( ( F  |`  A ) `  y
)  e.  ( ( F  |`  A ) `  x )  <->  ( F `  y )  e.  ( F `  x ) ) )
4847ralbidva 2434 . . . 4  |-  ( ( ( Smo  F  /\  Ord  A )  /\  x  e.  dom  ( F  |`  A ) )  -> 
( A. y  e.  x  ( ( F  |`  A ) `  y
)  e.  ( ( F  |`  A ) `  x )  <->  A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
4948ralbidva 2434 . . 3  |-  ( ( Smo  F  /\  Ord  A )  ->  ( A. x  e.  dom  ( F  |`  A ) A. y  e.  x  ( ( F  |`  A ) `  y )  e.  ( ( F  |`  A ) `
 x )  <->  A. x  e.  dom  ( F  |`  A ) A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
5032, 49mpbird 166 . 2  |-  ( ( Smo  F  /\  Ord  A )  ->  A. x  e.  dom  ( F  |`  A ) A. y  e.  x  ( ( F  |`  A ) `  y )  e.  ( ( F  |`  A ) `
 x ) )
51 dfsmo2 6192 . 2  |-  ( Smo  ( F  |`  A )  <-> 
( ( F  |`  A ) : dom  ( F  |`  A ) --> On  /\  Ord  dom  ( F  |`  A )  /\  A. x  e. 
dom  ( F  |`  A ) A. y  e.  x  ( ( F  |`  A ) `  y )  e.  ( ( F  |`  A ) `
 x ) ) )
5217, 25, 50, 51syl3anbrc 1166 1  |-  ( ( Smo  F  /\  Ord  A )  ->  Smo  ( F  |`  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   A.wral 2417    i^i cin 3075    C_ wss 3076   Ord word 4292   Oncon0 4293   dom cdm 4547   ran crn 4548    |` cres 4549   "cima 4550   Fun wfun 5125    Fn wfn 5126   -->wf 5127   ` cfv 5131   Smo wsmo 6190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-tr 4035  df-iord 4296  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-smo 6191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator