HomeHome Intuitionistic Logic Explorer
Theorem List (p. 63 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6201-6300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem2ndconst 6201 The mapping of a restriction of the  2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.)
 |-  ( A  e.  V  ->  ( 2nd  |`  ( { A }  X.  B ) ) : ( { A }  X.  B ) -1-1-onto-> B )
 
Theoremdfmpo 6202* Alternate definition for the maps-to notation df-mpo 5858 (although it requires that  C be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  C  e.  _V   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  = 
 U_ x  e.  A  U_ y  e.  B  { <.
 <. x ,  y >. ,  C >. }
 
Theoremcnvf1olem 6203 Lemma for cnvf1o 6204. (Contributed by Mario Carneiro, 27-Apr-2014.)
 |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) ) 
 ->  ( C  e.  `' A  /\  B  =  U. `' { C } )
 )
 
Theoremcnvf1o 6204* Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.)
 |-  ( Rel  A  ->  ( x  e.  A  |->  U. `' { x } ) : A -1-1-onto-> `' A )
 
Theoremf2ndf 6205 The  2nd (second component of an ordered pair) function restricted to a function  F is a function from  F into the codomain of  F. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
 |-  ( F : A --> B  ->  ( 2nd  |`  F ) : F --> B )
 
Theoremfo2ndf 6206 The  2nd (second component of an ordered pair) function restricted to a function  F is a function from  F onto the range of  F. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
 |-  ( F : A --> B  ->  ( 2nd  |`  F ) : F -onto-> ran  F )
 
Theoremf1o2ndf1 6207 The  2nd (second component of an ordered pair) function restricted to a one-to-one function  F is a one-to-one function from  F onto the range of  F. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
 |-  ( F : A -1-1-> B 
 ->  ( 2nd  |`  F ) : F -1-1-onto-> ran  F )
 
Theoremalgrflem 6208 Lemma for algrf and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  ( B ( F  o.  1st ) C )  =  ( F `
  B )
 
Theoremalgrflemg 6209 Lemma for algrf 11999 and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Jim Kingdon, 22-Jul-2021.)
 |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( B ( F  o.  1st ) C )  =  ( F `  B ) )
 
Theoremxporderlem 6210* Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011.)
 |-  T  =  { <. x ,  y >.  |  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x ) R ( 1st `  y
 )  \/  ( ( 1st `  x )  =  ( 1st `  y
 )  /\  ( 2nd `  x ) S ( 2nd `  y )
 ) ) ) }   =>    |-  ( <. a ,  b >. T
 <. c ,  d >.  <->  (
 ( ( a  e.  A  /\  c  e.  A )  /\  (
 b  e.  B  /\  d  e.  B )
 )  /\  ( a R c  \/  (
 a  =  c  /\  b S d ) ) ) )
 
Theorempoxp 6211* A lexicographical ordering of two posets. (Contributed by Scott Fenton, 16-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.)
 |-  T  =  { <. x ,  y >.  |  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x ) R ( 1st `  y
 )  \/  ( ( 1st `  x )  =  ( 1st `  y
 )  /\  ( 2nd `  x ) S ( 2nd `  y )
 ) ) ) }   =>    |-  (
 ( R  Po  A  /\  S  Po  B ) 
 ->  T  Po  ( A  X.  B ) )
 
Theoremspc2ed 6212* Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017.)
 |- 
 F/ x ch   &    |-  F/ y ch   &    |-  ( ( ph  /\  ( x  =  A  /\  y  =  B ) )  ->  ( ps  <->  ch ) )   =>    |-  ( ( ph  /\  ( A  e.  V  /\  B  e.  W )
 )  ->  ( ch  ->  E. x E. y ps ) )
 
Theoremcnvoprab 6213* The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.)
 |- 
 F/ x ps   &    |-  F/ y ps   &    |-  ( a  = 
 <. x ,  y >.  ->  ( ps  <->  ph ) )   &    |-  ( ps  ->  a  e.  ( _V  X.  _V ) )   =>    |-  `' { <. <. x ,  y >. ,  z >.  |  ph }  =  { <. z ,  a >.  |  ps }
 
Theoremf1od2 6214* Describe an implicit one-to-one onto function of two variables. (Contributed by Thierry Arnoux, 17-Aug-2017.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   &    |-  (
 ( ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  C  e.  W )   &    |-  (
 ( ph  /\  z  e.  D )  ->  ( I  e.  X  /\  J  e.  Y )
 )   &    |-  ( ph  ->  (
 ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( z  e.  D  /\  ( x  =  I  /\  y  =  J ) ) ) )   =>    |-  ( ph  ->  F : ( A  X.  B ) -1-1-onto-> D )
 
Theoremdisjxp1 6215* The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
 |-  ( ph  -> Disj  x  e.  A  B )   =>    |-  ( ph  -> Disj  x  e.  A  ( B  X.  C ) )
 
Theoremdisjsnxp 6216* The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
 |- Disj  j  e.  A  ( {
 j }  X.  B )
 
2.6.16  Special maps-to operations

The following theorems are about maps-to operations (see df-mpo 5858) where the domain of the second argument depends on the domain of the first argument, especially when the first argument is a pair and the base set of the second argument is the first component of the first argument, in short "x-maps-to operations". For labels, the abbreviations "mpox" are used (since "x" usually denotes the first argument). This is in line with the currently used conventions for such cases (see cbvmpox 5931, ovmpox 5981 and fmpox 6179). If the first argument is an ordered pair, as in the following, the abbreviation is extended to "mpoxop", and the maps-to operations are called "x-op maps-to operations" for short.

 
Theoremopeliunxp2f 6217* Membership in a union of Cartesian products, using bound-variable hypothesis for  E instead of distinct variable conditions as in opeliunxp2 4751. (Contributed by AV, 25-Oct-2020.)
 |-  F/_ x E   &    |-  ( x  =  C  ->  B  =  E )   =>    |-  ( <. C ,  D >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) )
 
Theoremmpoxopn0yelv 6218* If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
 |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  C )   =>    |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  ( <. V ,  W >. F K )  ->  K  e.  V ) )
 
Theoremmpoxopoveq 6219* Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.)
 |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  { n  e.  ( 1st `  x )  | 
 ph } )   =>    |-  ( ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V ) 
 ->  ( <. V ,  W >. F K )  =  { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph } )
 
Theoremmpoxopovel 6220* Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.)
 |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  { n  e.  ( 1st `  x )  | 
 ph } )   =>    |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  ( <. V ,  W >. F K ) 
 <->  ( K  e.  V  /\  N  e.  V  /\  [.
 <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
 ) )
 
Theoremrbropapd 6221* Properties of a pair in an extended binary relation. (Contributed by Alexander van der Vekens, 30-Oct-2017.)
 |-  ( ph  ->  M  =  { <. f ,  p >.  |  ( f W p  /\  ps ) } )   &    |-  ( ( f  =  F  /\  p  =  P )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( F  e.  X  /\  P  e.  Y ) 
 ->  ( F M P  <->  ( F W P  /\  ch ) ) ) )
 
Theoremrbropap 6222* Properties of a pair in a restricted binary relation  M expressed as an ordered-pair class abstraction:  M is the binary relation  W restricted by the condition 
ps. (Contributed by AV, 31-Jan-2021.)
 |-  ( ph  ->  M  =  { <. f ,  p >.  |  ( f W p  /\  ps ) } )   &    |-  ( ( f  =  F  /\  p  =  P )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ( ph  /\  F  e.  X  /\  P  e.  Y )  ->  ( F M P  <->  ( F W P  /\  ch ) ) )
 
2.6.17  Function transposition
 
Syntaxctpos 6223 The transposition of a function.
 class tpos  F
 
Definitiondf-tpos 6224* Define the transposition of a function, which is a function  G  = tpos  F satisfying  G ( x ,  y )  =  F ( y ,  x ). (Contributed by Mario Carneiro, 10-Sep-2015.)
 |- tpos  F  =  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/)
 } )  |->  U. `' { x } ) )
 
Theoremtposss 6225 Subset theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( F  C_  G  -> tpos 
 F  C_ tpos  G )
 
Theoremtposeq 6226 Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( F  =  G  -> tpos 
 F  = tpos  G )
 
Theoremtposeqd 6227 Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |-  ( ph  ->  F  =  G )   =>    |-  ( ph  -> tpos  F  = tpos  G )
 
Theoremtposssxp 6228 The transposition is a subset of a cross product. (Contributed by Mario Carneiro, 12-Jan-2017.)
 |- tpos  F  C_  ( ( `'
 dom  F  u.  { (/) } )  X.  ran  F )
 
Theoremreltpos 6229 The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |- 
 Rel tpos  F
 
Theorembrtpos2 6230 Value of the transposition at a pair  <. A ,  B >.. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( B  e.  V  ->  ( Atpos  F B  <->  ( A  e.  ( `'
 dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )
 
Theorembrtpos0 6231 The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( A  e.  V  ->  ( (/)tpos  F A  <->  (/) F A ) )
 
Theoremreldmtpos 6232 Necessary and sufficient condition for  dom tpos  F to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( Rel  dom tpos  F  <->  -.  (/)  e.  dom  F )
 
Theorembrtposg 6233 The transposition swaps arguments of a three-parameter relation. (Contributed by Jim Kingdon, 31-Jan-2019.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( <. A ,  B >.tpos  F C  <->  <. B ,  A >. F C ) )
 
Theoremottposg 6234 The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( <. A ,  B ,  C >.  e. tpos  F  <->  <. B ,  A ,  C >.  e.  F ) )
 
Theoremdmtpos 6235 The domain of tpos  F when  dom  F is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( Rel  dom  F  ->  dom tpos  F  =  `' dom  F )
 
Theoremrntpos 6236 The range of tpos  F when  dom  F is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( Rel  dom  F  ->  ran tpos  F  =  ran  F )
 
Theoremtposexg 6237 The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( F  e.  V  -> tpos 
 F  e.  _V )
 
Theoremovtposg 6238 The transposition swaps the arguments in a two-argument function. When  F is a matrix, which is to say a function from ( 1 ... m )  X. ( 1 ... n ) to the reals or some ring, tpos  F is the transposition of  F, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( Atpos  F B )  =  ( B F A ) )
 
Theoremtposfun 6239 The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( Fun  F  ->  Fun tpos  F )
 
Theoremdftpos2 6240* Alternate definition of tpos when 
F has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( Rel  dom  F  -> tpos 
 F  =  ( F  o.  ( x  e.  `' dom  F  |->  U. `' { x } ) ) )
 
Theoremdftpos3 6241* Alternate definition of tpos when 
F has relational domain. Compare df-cnv 4619. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( Rel  dom  F  -> tpos 
 F  =  { <. <. x ,  y >. ,  z >.  |  <. y ,  x >. F z }
 )
 
Theoremdftpos4 6242* Alternate definition of tpos. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |- tpos  F  =  ( F  o.  ( x  e.  (
 ( _V  X.  _V )  u.  { (/) } )  |-> 
 U. `' { x } ) )
 
Theoremtpostpos 6243 Value of the double transposition for a general class  F. (Contributed by Mario Carneiro, 16-Sep-2015.)
 |- tpos tpos  F  =  ( F  i^i  ( ( ( _V 
 X.  _V )  u.  { (/)
 } )  X.  _V ) )
 
Theoremtpostpos2 6244 Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015.)
 |-  ( ( Rel  F  /\  Rel  dom  F )  -> tpos tpos  F  =  F )
 
Theoremtposfn2 6245 The domain of a transposition. (Contributed by NM, 10-Sep-2015.)
 |-  ( Rel  A  ->  ( F  Fn  A  -> tpos  F  Fn  `' A ) )
 
Theoremtposfo2 6246 Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.)
 |-  ( Rel  A  ->  ( F : A -onto-> B  -> tpos 
 F : `' A -onto-> B ) )
 
Theoremtposf2 6247 The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.)
 |-  ( Rel  A  ->  ( F : A --> B  -> tpos  F : `' A --> B ) )
 
Theoremtposf12 6248 Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.)
 |-  ( Rel  A  ->  ( F : A -1-1-> B  -> tpos 
 F : `' A -1-1-> B ) )
 
Theoremtposf1o2 6249 Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015.)
 |-  ( Rel  A  ->  ( F : A -1-1-onto-> B  -> tpos  F : `' A
 -1-1-onto-> B ) )
 
Theoremtposfo 6250 The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.)
 |-  ( F : ( A  X.  B )
 -onto-> C  -> tpos  F : ( B  X.  A )
 -onto-> C )
 
Theoremtposf 6251 The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.)
 |-  ( F : ( A  X.  B ) --> C  -> tpos  F : ( B  X.  A ) --> C )
 
Theoremtposfn 6252 Functionality of a transposition. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( F  Fn  ( A  X.  B )  -> tpos  F  Fn  ( B  X.  A ) )
 
Theoremtpos0 6253 Transposition of the empty set. (Contributed by NM, 10-Sep-2015.)
 |- tpos  (/) 
 =  (/)
 
Theoremtposco 6254 Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |- tpos 
 ( F  o.  G )  =  ( F  o. tpos  G )
 
Theoremtpossym 6255* Two ways to say a function is symmetric. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( F  Fn  ( A  X.  A )  ->  (tpos  F  =  F  <->  A. x  e.  A  A. y  e.  A  ( x F y )  =  ( y F x ) ) )
 
Theoremtposeqi 6256 Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  F  =  G   =>    |- tpos  F  = tpos  G
 
Theoremtposex 6257 A transposition is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  F  e.  _V   =>    |- tpos  F  e.  _V
 
Theoremnftpos 6258 Hypothesis builder for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  F/_ x F   =>    |-  F/_ xtpos  F
 
Theoremtposoprab 6259* Transposition of a class of ordered triples. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  F  =  { <. <. x ,  y >. ,  z >.  |  ph }   =>    |- tpos  F  =  { <.
 <. y ,  x >. ,  z >.  |  ph }
 
Theoremtposmpo 6260* Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |- tpos  F  =  (
 y  e.  B ,  x  e.  A  |->  C )
 
2.6.18  Undefined values
 
Theorempwuninel2 6261 The power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Stefan O'Rear, 22-Feb-2015.)
 |-  ( U. A  e.  V  ->  -.  ~P U. A  e.  A )
 
Theorem2pwuninelg 6262 The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Jim Kingdon, 14-Jan-2020.)
 |-  ( A  e.  V  ->  -.  ~P ~P U. A  e.  A )
 
2.6.19  Functions on ordinals; strictly monotone ordinal functions
 
Theoremiunon 6263* The indexed union of a set of ordinal numbers  B ( x ) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.)
 |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  On )  ->  U_ x  e.  A  B  e.  On )
 
Syntaxwsmo 6264 Introduce the strictly monotone ordinal function. A strictly monotone function is one that is constantly increasing across the ordinals.
 wff  Smo  A
 
Definitiondf-smo 6265* Definition of a strictly monotone ordinal function. Definition 7.46 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 15-Nov-2011.)
 |-  ( Smo  A  <->  ( A : dom  A --> On  /\  Ord  dom  A 
 /\  A. x  e.  dom  A
 A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) ) )
 
Theoremdfsmo2 6266* Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013.)
 |-  ( Smo  F  <->  ( F : dom  F --> On  /\  Ord  dom  F 
 /\  A. x  e.  dom  F
 A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
 
Theoremissmo 6267* Conditions for which  A is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.)
 |-  A : B --> On   &    |-  Ord  B   &    |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )   &    |-  dom 
 A  =  B   =>    |-  Smo  A
 
Theoremissmo2 6268* Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.)
 |-  ( F : A --> B  ->  ( ( B 
 C_  On  /\  Ord  A  /\  A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x ) )  ->  Smo  F ) )
 
Theoremsmoeq 6269 Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.)
 |-  ( A  =  B  ->  ( Smo  A  <->  Smo  B ) )
 
Theoremsmodm 6270 The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.)
 |-  ( Smo  A  ->  Ord 
 dom  A )
 
Theoremsmores 6271 A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
 |-  ( ( Smo  A  /\  B  e.  dom  A )  ->  Smo  ( A  |`  B ) )
 
Theoremsmores3 6272 A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.)
 |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord 
 B )  ->  Smo  ( A  |`  C ) )
 
Theoremsmores2 6273 A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013.)
 |-  ( ( Smo  F  /\  Ord  A )  ->  Smo  ( F  |`  A ) )
 
Theoremsmodm2 6274 The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.)
 |-  ( ( F  Fn  A  /\  Smo  F )  ->  Ord  A )
 
Theoremsmofvon2dm 6275 The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.)
 |-  ( ( Smo  F  /\  B  e.  dom  F )  ->  ( F `  B )  e.  On )
 
Theoremiordsmo 6276 The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.)
 |- 
 Ord  A   =>    |- 
 Smo  (  _I  |`  A )
 
Theoremsmo0 6277 The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.)
 |- 
 Smo  (/)
 
Theoremsmofvon 6278 If  B is a strictly monotone ordinal function, and  A is in the domain of  B, then the value of the function at 
A is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011.)
 |-  ( ( Smo  B  /\  A  e.  dom  B )  ->  ( B `  A )  e.  On )
 
Theoremsmoel 6279 If  x is less than  y then a strictly monotone function's value will be strictly less at  x than at  y. (Contributed by Andrew Salmon, 22-Nov-2011.)
 |-  ( ( Smo  B  /\  A  e.  dom  B  /\  C  e.  A ) 
 ->  ( B `  C )  e.  ( B `  A ) )
 
Theoremsmoiun 6280* The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011.)
 |-  ( ( Smo  B  /\  A  e.  dom  B )  ->  U_ x  e.  A  ( B `  x ) 
 C_  ( B `  A ) )
 
Theoremsmoiso 6281 If  F is an isomorphism from an ordinal  A onto  B, which is a subset of the ordinals, then 
F is a strictly monotonic function. Exercise 3 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 24-Nov-2011.)
 |-  ( ( F  Isom  _E 
 ,  _E  ( A ,  B )  /\  Ord 
 A  /\  B  C_  On )  ->  Smo  F )
 
Theoremsmoel2 6282 A strictly monotone ordinal function preserves the epsilon relation. (Contributed by Mario Carneiro, 12-Mar-2013.)
 |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( B  e.  A  /\  C  e.  B ) )  ->  ( F `  C )  e.  ( F `  B ) )
 
2.6.20  "Strong" transfinite recursion
 
Syntaxcrecs 6283 Notation for a function defined by strong transfinite recursion.
 class recs ( F )
 
Definitiondf-recs 6284* Define a function recs ( F ) on  On, the class of ordinal numbers, by transfinite recursion given a rule  F which sets the next value given all values so far. See df-irdg 6349 for more details on why this definition is desirable. Unlike df-irdg 6349 which restricts the update rule to use only the previous value, this version allows the update rule to use all previous values, which is why it is described as "strong", although it is actually more primitive. See tfri1d 6314 and tfri2d 6315 for the primary contract of this definition.

(Contributed by Stefan O'Rear, 18-Jan-2015.)

 |- recs
 ( F )  = 
 U. { f  | 
 E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }
 
Theoremrecseq 6285 Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
 |-  ( F  =  G  -> recs ( F )  = recs ( G ) )
 
Theoremnfrecs 6286 Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
 |-  F/_ x F   =>    |-  F/_ xrecs ( F )
 
Theoremtfrlem1 6287* A technical lemma for transfinite recursion. Compare Lemma 1 of [TakeutiZaring] p. 47. (Contributed by NM, 23-Mar-1995.) (Revised by Mario Carneiro, 24-May-2019.)
 |-  ( ph  ->  A  e.  On )   &    |-  ( ph  ->  ( Fun  F  /\  A  C_ 
 dom  F ) )   &    |-  ( ph  ->  ( Fun  G  /\  A  C_  dom  G ) )   &    |-  ( ph  ->  A. x  e.  A  ( F `  x )  =  ( B `  ( F  |`  x ) ) )   &    |-  ( ph  ->  A. x  e.  A  ( G `  x )  =  ( B `  ( G  |`  x ) ) )   =>    |-  ( ph  ->  A. x  e.  A  ( F `  x )  =  ( G `  x ) )
 
Theoremtfrlem3ag 6288* Lemma for transfinite recursion. This lemma just changes some bound variables in  A for later use. (Contributed by Jim Kingdon, 5-Jul-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |-  ( G  e.  _V  ->  ( G  e.  A  <->  E. z  e.  On  ( G  Fn  z  /\  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) ) )
 
Theoremtfrlem3a 6289* Lemma for transfinite recursion. Let  A be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in  A for later use. (Contributed by NM, 9-Apr-1995.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  G  e.  _V   =>    |-  ( G  e.  A  <->  E. z  e.  On  ( G  Fn  z  /\  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) )
 
Theoremtfrlem3 6290* Lemma for transfinite recursion. Let  A be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in  A for later use. (Contributed by NM, 9-Apr-1995.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |-  A  =  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) }
 
Theoremtfrlem3-2d 6291* Lemma for transfinite recursion which changes a bound variable (Contributed by Jim Kingdon, 2-Jul-2019.)
 |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e. 
 _V ) )   =>    |-  ( ph  ->  ( Fun  F  /\  ( F `  g )  e. 
 _V ) )
 
Theoremtfrlem4 6292* Lemma for transfinite recursion.  A is the class of all "acceptable" functions, and  F is their union. First we show that an acceptable function is in fact a function. (Contributed by NM, 9-Apr-1995.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |-  ( g  e.  A  ->  Fun  g )
 
Theoremtfrlem5 6293* Lemma for transfinite recursion. The values of two acceptable functions are the same within their domains. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 24-May-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |-  ( ( g  e.  A  /\  h  e.  A )  ->  (
 ( x g u 
 /\  x h v )  ->  u  =  v ) )
 
Theoremrecsfval 6294* Lemma for transfinite recursion. The definition recs is the union of all acceptable functions. (Contributed by Mario Carneiro, 9-May-2015.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |- recs
 ( F )  = 
 U. A
 
Theoremtfrlem6 6295* Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |- 
 Rel recs ( F )
 
Theoremtfrlem7 6296* Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |- 
 Fun recs ( F )
 
Theoremtfrlem8 6297* Lemma for transfinite recursion. The domain of recs is ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |- 
 Ord  dom recs ( F )
 
Theoremtfrlem9 6298* Lemma for transfinite recursion. Here we compute the value of recs (the union of all acceptable functions). (Contributed by NM, 17-Aug-1994.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |-  ( B  e.  dom recs ( F )  ->  (recs ( F ) `  B )  =  ( F `  (recs ( F )  |`  B ) ) )
 
Theoremtfrfun 6299 Transfinite recursion produces a function. (Contributed by Jim Kingdon, 20-Aug-2021.)
 |- 
 Fun recs ( F )
 
Theoremtfr2a 6300 A weak version of transfinite recursion. (Contributed by Mario Carneiro, 24-Jun-2015.)
 |-  F  = recs ( G )   =>    |-  ( A  e.  dom  F 
 ->  ( F `  A )  =  ( G `  ( F  |`  A ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >