HomeHome Intuitionistic Logic Explorer
Theorem List (p. 63 of 138)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6201-6300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrbropapd 6201* Properties of a pair in an extended binary relation. (Contributed by Alexander van der Vekens, 30-Oct-2017.)
 |-  ( ph  ->  M  =  { <. f ,  p >.  |  ( f W p  /\  ps ) } )   &    |-  ( ( f  =  F  /\  p  =  P )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( F  e.  X  /\  P  e.  Y ) 
 ->  ( F M P  <->  ( F W P  /\  ch ) ) ) )
 
Theoremrbropap 6202* Properties of a pair in a restricted binary relation  M expressed as an ordered-pair class abstraction:  M is the binary relation  W restricted by the condition 
ps. (Contributed by AV, 31-Jan-2021.)
 |-  ( ph  ->  M  =  { <. f ,  p >.  |  ( f W p  /\  ps ) } )   &    |-  ( ( f  =  F  /\  p  =  P )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ( ph  /\  F  e.  X  /\  P  e.  Y )  ->  ( F M P  <->  ( F W P  /\  ch ) ) )
 
2.6.17  Function transposition
 
Syntaxctpos 6203 The transposition of a function.
 class tpos  F
 
Definitiondf-tpos 6204* Define the transposition of a function, which is a function  G  = tpos  F satisfying  G ( x ,  y )  =  F ( y ,  x ). (Contributed by Mario Carneiro, 10-Sep-2015.)
 |- tpos  F  =  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/)
 } )  |->  U. `' { x } ) )
 
Theoremtposss 6205 Subset theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( F  C_  G  -> tpos 
 F  C_ tpos  G )
 
Theoremtposeq 6206 Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( F  =  G  -> tpos 
 F  = tpos  G )
 
Theoremtposeqd 6207 Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |-  ( ph  ->  F  =  G )   =>    |-  ( ph  -> tpos  F  = tpos  G )
 
Theoremtposssxp 6208 The transposition is a subset of a cross product. (Contributed by Mario Carneiro, 12-Jan-2017.)
 |- tpos  F  C_  ( ( `'
 dom  F  u.  { (/) } )  X.  ran  F )
 
Theoremreltpos 6209 The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |- 
 Rel tpos  F
 
Theorembrtpos2 6210 Value of the transposition at a pair  <. A ,  B >.. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( B  e.  V  ->  ( Atpos  F B  <->  ( A  e.  ( `'
 dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )
 
Theorembrtpos0 6211 The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( A  e.  V  ->  ( (/)tpos  F A  <->  (/) F A ) )
 
Theoremreldmtpos 6212 Necessary and sufficient condition for  dom tpos  F to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( Rel  dom tpos  F  <->  -.  (/)  e.  dom  F )
 
Theorembrtposg 6213 The transposition swaps arguments of a three-parameter relation. (Contributed by Jim Kingdon, 31-Jan-2019.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( <. A ,  B >.tpos  F C  <->  <. B ,  A >. F C ) )
 
Theoremottposg 6214 The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( <. A ,  B ,  C >.  e. tpos  F  <->  <. B ,  A ,  C >.  e.  F ) )
 
Theoremdmtpos 6215 The domain of tpos  F when  dom  F is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( Rel  dom  F  ->  dom tpos  F  =  `' dom  F )
 
Theoremrntpos 6216 The range of tpos  F when  dom  F is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( Rel  dom  F  ->  ran tpos  F  =  ran  F )
 
Theoremtposexg 6217 The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( F  e.  V  -> tpos 
 F  e.  _V )
 
Theoremovtposg 6218 The transposition swaps the arguments in a two-argument function. When  F is a matrix, which is to say a function from ( 1 ... m )  X. ( 1 ... n ) to the reals or some ring, tpos  F is the transposition of  F, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( Atpos  F B )  =  ( B F A ) )
 
Theoremtposfun 6219 The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( Fun  F  ->  Fun tpos  F )
 
Theoremdftpos2 6220* Alternate definition of tpos when 
F has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( Rel  dom  F  -> tpos 
 F  =  ( F  o.  ( x  e.  `' dom  F  |->  U. `' { x } ) ) )
 
Theoremdftpos3 6221* Alternate definition of tpos when 
F has relational domain. Compare df-cnv 4606. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( Rel  dom  F  -> tpos 
 F  =  { <. <. x ,  y >. ,  z >.  |  <. y ,  x >. F z }
 )
 
Theoremdftpos4 6222* Alternate definition of tpos. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |- tpos  F  =  ( F  o.  ( x  e.  (
 ( _V  X.  _V )  u.  { (/) } )  |-> 
 U. `' { x } ) )
 
Theoremtpostpos 6223 Value of the double transposition for a general class  F. (Contributed by Mario Carneiro, 16-Sep-2015.)
 |- tpos tpos  F  =  ( F  i^i  ( ( ( _V 
 X.  _V )  u.  { (/)
 } )  X.  _V ) )
 
Theoremtpostpos2 6224 Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015.)
 |-  ( ( Rel  F  /\  Rel  dom  F )  -> tpos tpos  F  =  F )
 
Theoremtposfn2 6225 The domain of a transposition. (Contributed by NM, 10-Sep-2015.)
 |-  ( Rel  A  ->  ( F  Fn  A  -> tpos  F  Fn  `' A ) )
 
Theoremtposfo2 6226 Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.)
 |-  ( Rel  A  ->  ( F : A -onto-> B  -> tpos 
 F : `' A -onto-> B ) )
 
Theoremtposf2 6227 The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.)
 |-  ( Rel  A  ->  ( F : A --> B  -> tpos  F : `' A --> B ) )
 
Theoremtposf12 6228 Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.)
 |-  ( Rel  A  ->  ( F : A -1-1-> B  -> tpos 
 F : `' A -1-1-> B ) )
 
Theoremtposf1o2 6229 Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015.)
 |-  ( Rel  A  ->  ( F : A -1-1-onto-> B  -> tpos  F : `' A
 -1-1-onto-> B ) )
 
Theoremtposfo 6230 The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.)
 |-  ( F : ( A  X.  B )
 -onto-> C  -> tpos  F : ( B  X.  A )
 -onto-> C )
 
Theoremtposf 6231 The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.)
 |-  ( F : ( A  X.  B ) --> C  -> tpos  F : ( B  X.  A ) --> C )
 
Theoremtposfn 6232 Functionality of a transposition. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( F  Fn  ( A  X.  B )  -> tpos  F  Fn  ( B  X.  A ) )
 
Theoremtpos0 6233 Transposition of the empty set. (Contributed by NM, 10-Sep-2015.)
 |- tpos  (/) 
 =  (/)
 
Theoremtposco 6234 Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |- tpos 
 ( F  o.  G )  =  ( F  o. tpos  G )
 
Theoremtpossym 6235* Two ways to say a function is symmetric. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( F  Fn  ( A  X.  A )  ->  (tpos  F  =  F  <->  A. x  e.  A  A. y  e.  A  ( x F y )  =  ( y F x ) ) )
 
Theoremtposeqi 6236 Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  F  =  G   =>    |- tpos  F  = tpos  G
 
Theoremtposex 6237 A transposition is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  F  e.  _V   =>    |- tpos  F  e.  _V
 
Theoremnftpos 6238 Hypothesis builder for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  F/_ x F   =>    |-  F/_ xtpos  F
 
Theoremtposoprab 6239* Transposition of a class of ordered triples. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  F  =  { <. <. x ,  y >. ,  z >.  |  ph }   =>    |- tpos  F  =  { <.
 <. y ,  x >. ,  z >.  |  ph }
 
Theoremtposmpo 6240* Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |- tpos  F  =  (
 y  e.  B ,  x  e.  A  |->  C )
 
2.6.18  Undefined values
 
Theorempwuninel2 6241 The power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Stefan O'Rear, 22-Feb-2015.)
 |-  ( U. A  e.  V  ->  -.  ~P U. A  e.  A )
 
Theorem2pwuninelg 6242 The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Jim Kingdon, 14-Jan-2020.)
 |-  ( A  e.  V  ->  -.  ~P ~P U. A  e.  A )
 
2.6.19  Functions on ordinals; strictly monotone ordinal functions
 
Theoremiunon 6243* The indexed union of a set of ordinal numbers  B ( x ) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.)
 |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  On )  ->  U_ x  e.  A  B  e.  On )
 
Syntaxwsmo 6244 Introduce the strictly monotone ordinal function. A strictly monotone function is one that is constantly increasing across the ordinals.
 wff  Smo  A
 
Definitiondf-smo 6245* Definition of a strictly monotone ordinal function. Definition 7.46 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 15-Nov-2011.)
 |-  ( Smo  A  <->  ( A : dom  A --> On  /\  Ord  dom  A 
 /\  A. x  e.  dom  A
 A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) ) )
 
Theoremdfsmo2 6246* Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013.)
 |-  ( Smo  F  <->  ( F : dom  F --> On  /\  Ord  dom  F 
 /\  A. x  e.  dom  F
 A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
 
Theoremissmo 6247* Conditions for which  A is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.)
 |-  A : B --> On   &    |-  Ord  B   &    |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )   &    |-  dom 
 A  =  B   =>    |-  Smo  A
 
Theoremissmo2 6248* Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.)
 |-  ( F : A --> B  ->  ( ( B 
 C_  On  /\  Ord  A  /\  A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x ) )  ->  Smo  F ) )
 
Theoremsmoeq 6249 Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.)
 |-  ( A  =  B  ->  ( Smo  A  <->  Smo  B ) )
 
Theoremsmodm 6250 The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.)
 |-  ( Smo  A  ->  Ord 
 dom  A )
 
Theoremsmores 6251 A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
 |-  ( ( Smo  A  /\  B  e.  dom  A )  ->  Smo  ( A  |`  B ) )
 
Theoremsmores3 6252 A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.)
 |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord 
 B )  ->  Smo  ( A  |`  C ) )
 
Theoremsmores2 6253 A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013.)
 |-  ( ( Smo  F  /\  Ord  A )  ->  Smo  ( F  |`  A ) )
 
Theoremsmodm2 6254 The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.)
 |-  ( ( F  Fn  A  /\  Smo  F )  ->  Ord  A )
 
Theoremsmofvon2dm 6255 The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.)
 |-  ( ( Smo  F  /\  B  e.  dom  F )  ->  ( F `  B )  e.  On )
 
Theoremiordsmo 6256 The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.)
 |- 
 Ord  A   =>    |- 
 Smo  (  _I  |`  A )
 
Theoremsmo0 6257 The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.)
 |- 
 Smo  (/)
 
Theoremsmofvon 6258 If  B is a strictly monotone ordinal function, and  A is in the domain of  B, then the value of the function at 
A is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011.)
 |-  ( ( Smo  B  /\  A  e.  dom  B )  ->  ( B `  A )  e.  On )
 
Theoremsmoel 6259 If  x is less than  y then a strictly monotone function's value will be strictly less at  x than at  y. (Contributed by Andrew Salmon, 22-Nov-2011.)
 |-  ( ( Smo  B  /\  A  e.  dom  B  /\  C  e.  A ) 
 ->  ( B `  C )  e.  ( B `  A ) )
 
Theoremsmoiun 6260* The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011.)
 |-  ( ( Smo  B  /\  A  e.  dom  B )  ->  U_ x  e.  A  ( B `  x ) 
 C_  ( B `  A ) )
 
Theoremsmoiso 6261 If  F is an isomorphism from an ordinal  A onto  B, which is a subset of the ordinals, then 
F is a strictly monotonic function. Exercise 3 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 24-Nov-2011.)
 |-  ( ( F  Isom  _E 
 ,  _E  ( A ,  B )  /\  Ord 
 A  /\  B  C_  On )  ->  Smo  F )
 
Theoremsmoel2 6262 A strictly monotone ordinal function preserves the epsilon relation. (Contributed by Mario Carneiro, 12-Mar-2013.)
 |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( B  e.  A  /\  C  e.  B ) )  ->  ( F `  C )  e.  ( F `  B ) )
 
2.6.20  "Strong" transfinite recursion
 
Syntaxcrecs 6263 Notation for a function defined by strong transfinite recursion.
 class recs ( F )
 
Definitiondf-recs 6264* Define a function recs ( F ) on  On, the class of ordinal numbers, by transfinite recursion given a rule  F which sets the next value given all values so far. See df-irdg 6329 for more details on why this definition is desirable. Unlike df-irdg 6329 which restricts the update rule to use only the previous value, this version allows the update rule to use all previous values, which is why it is described as "strong", although it is actually more primitive. See tfri1d 6294 and tfri2d 6295 for the primary contract of this definition.

(Contributed by Stefan O'Rear, 18-Jan-2015.)

 |- recs
 ( F )  = 
 U. { f  | 
 E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }
 
Theoremrecseq 6265 Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
 |-  ( F  =  G  -> recs ( F )  = recs ( G ) )
 
Theoremnfrecs 6266 Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
 |-  F/_ x F   =>    |-  F/_ xrecs ( F )
 
Theoremtfrlem1 6267* A technical lemma for transfinite recursion. Compare Lemma 1 of [TakeutiZaring] p. 47. (Contributed by NM, 23-Mar-1995.) (Revised by Mario Carneiro, 24-May-2019.)
 |-  ( ph  ->  A  e.  On )   &    |-  ( ph  ->  ( Fun  F  /\  A  C_ 
 dom  F ) )   &    |-  ( ph  ->  ( Fun  G  /\  A  C_  dom  G ) )   &    |-  ( ph  ->  A. x  e.  A  ( F `  x )  =  ( B `  ( F  |`  x ) ) )   &    |-  ( ph  ->  A. x  e.  A  ( G `  x )  =  ( B `  ( G  |`  x ) ) )   =>    |-  ( ph  ->  A. x  e.  A  ( F `  x )  =  ( G `  x ) )
 
Theoremtfrlem3ag 6268* Lemma for transfinite recursion. This lemma just changes some bound variables in  A for later use. (Contributed by Jim Kingdon, 5-Jul-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |-  ( G  e.  _V  ->  ( G  e.  A  <->  E. z  e.  On  ( G  Fn  z  /\  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) ) )
 
Theoremtfrlem3a 6269* Lemma for transfinite recursion. Let  A be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in  A for later use. (Contributed by NM, 9-Apr-1995.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  G  e.  _V   =>    |-  ( G  e.  A  <->  E. z  e.  On  ( G  Fn  z  /\  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) )
 
Theoremtfrlem3 6270* Lemma for transfinite recursion. Let  A be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in  A for later use. (Contributed by NM, 9-Apr-1995.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |-  A  =  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) }
 
Theoremtfrlem3-2d 6271* Lemma for transfinite recursion which changes a bound variable (Contributed by Jim Kingdon, 2-Jul-2019.)
 |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e. 
 _V ) )   =>    |-  ( ph  ->  ( Fun  F  /\  ( F `  g )  e. 
 _V ) )
 
Theoremtfrlem4 6272* Lemma for transfinite recursion.  A is the class of all "acceptable" functions, and  F is their union. First we show that an acceptable function is in fact a function. (Contributed by NM, 9-Apr-1995.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |-  ( g  e.  A  ->  Fun  g )
 
Theoremtfrlem5 6273* Lemma for transfinite recursion. The values of two acceptable functions are the same within their domains. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 24-May-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |-  ( ( g  e.  A  /\  h  e.  A )  ->  (
 ( x g u 
 /\  x h v )  ->  u  =  v ) )
 
Theoremrecsfval 6274* Lemma for transfinite recursion. The definition recs is the union of all acceptable functions. (Contributed by Mario Carneiro, 9-May-2015.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |- recs
 ( F )  = 
 U. A
 
Theoremtfrlem6 6275* Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |- 
 Rel recs ( F )
 
Theoremtfrlem7 6276* Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |- 
 Fun recs ( F )
 
Theoremtfrlem8 6277* Lemma for transfinite recursion. The domain of recs is ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |- 
 Ord  dom recs ( F )
 
Theoremtfrlem9 6278* Lemma for transfinite recursion. Here we compute the value of recs (the union of all acceptable functions). (Contributed by NM, 17-Aug-1994.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |-  ( B  e.  dom recs ( F )  ->  (recs ( F ) `  B )  =  ( F `  (recs ( F )  |`  B ) ) )
 
Theoremtfrfun 6279 Transfinite recursion produces a function. (Contributed by Jim Kingdon, 20-Aug-2021.)
 |- 
 Fun recs ( F )
 
Theoremtfr2a 6280 A weak version of transfinite recursion. (Contributed by Mario Carneiro, 24-Jun-2015.)
 |-  F  = recs ( G )   =>    |-  ( A  e.  dom  F 
 ->  ( F `  A )  =  ( G `  ( F  |`  A ) ) )
 
Theoremtfr0dm 6281 Transfinite recursion is defined at the empty set. (Contributed by Jim Kingdon, 8-Mar-2022.)
 |-  F  = recs ( G )   =>    |-  ( ( G `  (/) )  e.  V  ->  (/)  e. 
 dom  F )
 
Theoremtfr0 6282 Transfinite recursion at the empty set. (Contributed by Jim Kingdon, 8-May-2020.)
 |-  F  = recs ( G )   =>    |-  ( ( G `  (/) )  e.  V  ->  ( F `  (/) )  =  ( G `  (/) ) )
 
Theoremtfrlemisucfn 6283* We can extend an acceptable function by one element to produce a function. Lemma for tfrlemi1 6291. (Contributed by Jim Kingdon, 2-Jul-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   &    |-  ( ph  ->  z  e.  On )   &    |-  ( ph  ->  g  Fn  z )   &    |-  ( ph  ->  g  e.  A )   =>    |-  ( ph  ->  (
 g  u.  { <. z ,  ( F `  g ) >. } )  Fn  suc  z )
 
Theoremtfrlemisucaccv 6284* We can extend an acceptable function by one element to produce an acceptable function. Lemma for tfrlemi1 6291. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   &    |-  ( ph  ->  z  e.  On )   &    |-  ( ph  ->  g  Fn  z )   &    |-  ( ph  ->  g  e.  A )   =>    |-  ( ph  ->  (
 g  u.  { <. z ,  ( F `  g ) >. } )  e.  A )
 
Theoremtfrlemibacc 6285* Each element of  B is an acceptable function. Lemma for tfrlemi1 6291. (Contributed by Jim Kingdon, 14-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   &    |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
  g ) >. } ) ) }   &    |-  ( ph  ->  x  e.  On )   &    |-  ( ph  ->  A. z  e.  x  E. g
 ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )   =>    |-  ( ph  ->  B 
 C_  A )
 
Theoremtfrlemibxssdm 6286* The union of  B is defined on all ordinals. Lemma for tfrlemi1 6291. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   &    |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
  g ) >. } ) ) }   &    |-  ( ph  ->  x  e.  On )   &    |-  ( ph  ->  A. z  e.  x  E. g
 ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )   =>    |-  ( ph  ->  x 
 C_  dom  U. B )
 
Theoremtfrlemibfn 6287* The union of  B is a function defined on  x. Lemma for tfrlemi1 6291. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   &    |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
  g ) >. } ) ) }   &    |-  ( ph  ->  x  e.  On )   &    |-  ( ph  ->  A. z  e.  x  E. g
 ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )   =>    |-  ( ph  ->  U. B  Fn  x )
 
Theoremtfrlemibex 6288* The set  B exists. Lemma for tfrlemi1 6291. (Contributed by Jim Kingdon, 17-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   &    |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
  g ) >. } ) ) }   &    |-  ( ph  ->  x  e.  On )   &    |-  ( ph  ->  A. z  e.  x  E. g
 ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )   =>    |-  ( ph  ->  B  e.  _V )
 
Theoremtfrlemiubacc 6289* The union of  B satisfies the recursion rule (lemma for tfrlemi1 6291). (Contributed by Jim Kingdon, 22-Apr-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   &    |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
  g ) >. } ) ) }   &    |-  ( ph  ->  x  e.  On )   &    |-  ( ph  ->  A. z  e.  x  E. g
 ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )   =>    |-  ( ph  ->  A. u  e.  x  (
 U. B `  u )  =  ( F `  ( U. B  |`  u ) ) )
 
Theoremtfrlemiex 6290* Lemma for tfrlemi1 6291. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   &    |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
  g ) >. } ) ) }   &    |-  ( ph  ->  x  e.  On )   &    |-  ( ph  ->  A. z  e.  x  E. g
 ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )   =>    |-  ( ph  ->  E. f ( f  Fn  x  /\  A. u  e.  x  ( f `  u )  =  ( F `  ( f  |`  u ) ) ) )
 
Theoremtfrlemi1 6291* We can define an acceptable function on any ordinal.

As with many of the transfinite recursion theorems, we have a hypothesis that states that  F is a function and that it is defined for all ordinals. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)

 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   =>    |-  ( ( ph  /\  C  e.  On )  ->  E. g
 ( g  Fn  C  /\  A. u  e.  C  ( g `  u )  =  ( F `  ( g  |`  u ) ) ) )
 
Theoremtfrlemi14d 6292* The domain of recs is all ordinals (lemma for transfinite recursion). (Contributed by Jim Kingdon, 9-Jul-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   =>    |-  ( ph  ->  dom recs ( F )  =  On )
 
Theoremtfrexlem 6293* The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   =>    |-  ( ( ph  /\  C  e.  V )  ->  (recs ( F ) `  C )  e.  _V )
 
Theoremtfri1d 6294* Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47, with an additional condition.

The condition is that  G is defined "everywhere", which is stated here as  ( G `  x )  e.  _V. Alternately,  A. x  e.  On A. f ( f  Fn  x  -> 
f  e.  dom  G
) would suffice.

Given a function  G satisfying that condition, we define a class  A of all "acceptable" functions. The final function we're interested in is the union 
F  = recs ( G ) of them.  F is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of  F. In this first part we show that  F is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.)

 |-  F  = recs ( G )   &    |-  ( ph  ->  A. x ( Fun  G  /\  ( G `  x )  e.  _V )
 )   =>    |-  ( ph  ->  F  Fn  On )
 
Theoremtfri2d 6295* Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule  G ( as described at tfri1 6324). Here we show that the function  F has the property that for any function  G satisfying that condition, the "next" value of  F is  G recursively applied to all "previous" values of  F. (Contributed by Jim Kingdon, 4-May-2019.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  A. x ( Fun  G  /\  ( G `  x )  e.  _V )
 )   =>    |-  ( ( ph  /\  A  e.  On )  ->  ( F `  A )  =  ( G `  ( F  |`  A ) ) )
 
Theoremtfr1onlem3ag 6296* Lemma for transfinite recursion. This lemma changes some bound variables in  A (version of tfrlem3ag 6268 but for tfr1on 6309 related lemmas). (Contributed by Jim Kingdon, 13-Mar-2022.)
 |-  A  =  { f  |  E. x  e.  X  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( G `
  ( f  |`  y ) ) ) }   =>    |-  ( H  e.  V  ->  ( H  e.  A  <->  E. z  e.  X  ( H  Fn  z  /\  A. w  e.  z  ( H `  w )  =  ( G `  ( H  |`  w ) ) ) ) )
 
Theoremtfr1onlem3 6297* Lemma for transfinite recursion. This lemma changes some bound variables in  A (version of tfrlem3 6270 but for tfr1on 6309 related lemmas). (Contributed by Jim Kingdon, 14-Mar-2022.)
 |-  A  =  { f  |  E. x  e.  X  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( G `
  ( f  |`  y ) ) ) }   =>    |-  A  =  { g  |  E. z  e.  X  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) }
 
Theoremtfr1onlemssrecs 6298* Lemma for tfr1on 6309. The union of functions acceptable for tfr1on 6309 is a subset of recs. (Contributed by Jim Kingdon, 15-Mar-2022.)
 |-  A  =  { f  |  E. x  e.  X  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( G `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  Ord 
 X )   =>    |-  ( ph  ->  U. A  C_ recs
 ( G ) )
 
Theoremtfr1onlemsucfn 6299* We can extend an acceptable function by one element to produce a function. Lemma for tfr1on 6309. (Contributed by Jim Kingdon, 12-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )   &    |-  A  =  { f  |  E. x  e.  X  (
 f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  z  e.  X )   &    |-  ( ph  ->  g  Fn  z )   &    |-  ( ph  ->  g  e.  A )   =>    |-  ( ph  ->  ( g  u.  { <. z ,  ( G `  g ) >. } )  Fn  suc  z )
 
Theoremtfr1onlemsucaccv 6300* Lemma for tfr1on 6309. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 12-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )   &    |-  A  =  { f  |  E. x  e.  X  (
 f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  Y  e.  X )   &    |-  ( ph  ->  z  e.  Y )   &    |-  ( ( ph  /\  x  e.  U. X )  ->  suc  x  e.  X )   &    |-  ( ph  ->  g  Fn  z )   &    |-  ( ph  ->  g  e.  A )   =>    |-  ( ph  ->  (
 g  u.  { <. z ,  ( G `  g ) >. } )  e.  A )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13794
  Copyright terms: Public domain < Previous  Next >