HomeHome Intuitionistic Logic Explorer
Theorem List (p. 63 of 160)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6201-6300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremabrexex 6201* Existence of a class abstraction of existentially restricted sets.  x is normally a free-variable parameter in the class expression substituted for  B, which can be thought of as  B ( x ). This simple-looking theorem is actually quite powerful and appears to involve the Axiom of Replacement in an intrinsic way, as can be seen by tracing back through the path mptexg 5808, funex 5806, fnex 5805, resfunexg 5804, and funimaexg 5357. See also abrexex2 6208. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
 |-  A  e.  _V   =>    |-  { y  | 
 E. x  e.  A  y  =  B }  e.  _V
 
Theoremabrexexg 6202* Existence of a class abstraction of existentially restricted sets.  x is normally a free-variable parameter in  B. The antecedent assures us that  A is a set. (Contributed by NM, 3-Nov-2003.)
 |-  ( A  e.  V  ->  { y  |  E. x  e.  A  y  =  B }  e.  _V )
 
Theoremiunexg 6203* The existence of an indexed union. 
x is normally a free-variable parameter in  B. (Contributed by NM, 23-Mar-2006.)
 |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  W )  ->  U_ x  e.  A  B  e.  _V )
 
Theoremabrexex2g 6204* Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( A  e.  V  /\  A. x  e.  A  { y  | 
 ph }  e.  W )  ->  { y  | 
 E. x  e.  A  ph
 }  e.  _V )
 
Theoremopabex3d 6205* Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.)
 |-  ( ph  ->  A  e.  _V )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  { y  |  ps }  e.  _V )   =>    |-  ( ph  ->  {
 <. x ,  y >.  |  ( x  e.  A  /\  ps ) }  e.  _V )
 
Theoremopabex3 6206* Existence of an ordered pair abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  A  e.  _V   &    |-  ( x  e.  A  ->  { y  |  ph }  e.  _V )   =>    |- 
 { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  e.  _V
 
Theoremiunex 6207* The existence of an indexed union. 
x is normally a free-variable parameter in the class expression substituted for  B, which can be read informally as  B ( x ). (Contributed by NM, 13-Oct-2003.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  U_ x  e.  A  B  e.  _V
 
Theoremabrexex2 6208* Existence of an existentially restricted class abstraction.  ph is normally has free-variable parameters  x and  y. See also abrexex 6201. (Contributed by NM, 12-Sep-2004.)
 |-  A  e.  _V   &    |-  { y  |  ph }  e.  _V   =>    |-  { y  |  E. x  e.  A  ph
 }  e.  _V
 
Theoremabexssex 6209* Existence of a class abstraction with an existentially quantified expression. Both  x and  y can be free in  ph. (Contributed by NM, 29-Jul-2006.)
 |-  A  e.  _V   &    |-  { y  |  ph }  e.  _V   =>    |-  { y  |  E. x ( x 
 C_  A  /\  ph ) }  e.  _V
 
Theoremabexex 6210* A condition where a class builder continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.)
 |-  A  e.  _V   &    |-  ( ph  ->  x  e.  A )   &    |- 
 { y  |  ph }  e.  _V   =>    |- 
 { y  |  E. x ph }  e.  _V
 
Theoremoprabexd 6211* Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  B  e.  _V )   &    |-  (
 ( ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  E* z ps )   &    |-  ( ph  ->  F  =  { <.
 <. x ,  y >. ,  z >.  |  (
 ( x  e.  A  /\  y  e.  B )  /\  ps ) }
 )   =>    |-  ( ph  ->  F  e.  _V )
 
Theoremoprabex 6212* Existence of an operation class abstraction. (Contributed by NM, 19-Oct-2004.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ( x  e.  A  /\  y  e.  B )  ->  E* z ph )   &    |-  F  =  { <.
 <. x ,  y >. ,  z >.  |  (
 ( x  e.  A  /\  y  e.  B )  /\  ph ) }   =>    |-  F  e.  _V
 
Theoremoprabex3 6213* Existence of an operation class abstraction (special case). (Contributed by NM, 19-Oct-2004.)
 |-  H  e.  _V   &    |-  F  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  ( H  X.  H )  /\  y  e.  ( H  X.  H ) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f >. ) 
 /\  z  =  R ) ) }   =>    |-  F  e.  _V
 
Theoremoprabrexex2 6214* Existence of an existentially restricted operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.)
 |-  A  e.  _V   &    |-  { <. <. x ,  y >. ,  z >.  |  ph }  e.  _V   =>    |-  {
 <. <. x ,  y >. ,  z >.  |  E. w  e.  A  ph }  e.  _V
 
Theoremab2rexex 6215* Existence of a class abstraction of existentially restricted sets. Variables  x and  y are normally free-variable parameters in the class expression substituted for  C, which can be thought of as  C ( x ,  y ). See comments for abrexex 6201. (Contributed by NM, 20-Sep-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 { z  |  E. x  e.  A  E. y  e.  B  z  =  C }  e.  _V
 
Theoremab2rexex2 6216* Existence of an existentially restricted class abstraction.  ph normally has free-variable parameters  x,  y, and  z. Compare abrexex2 6208. (Contributed by NM, 20-Sep-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  { z  | 
 ph }  e.  _V   =>    |-  { z  |  E. x  e.  A  E. y  e.  B  ph
 }  e.  _V
 
TheoremxpexgALT 6217 The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. This version is proven using Replacement; see xpexg 4788 for a version that uses the Power Set axiom instead. (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B )  e.  _V )
 
Theoremoffval3 6218* General value of  ( F  oF R G ) with no assumptions on functionality of  F and  G. (Contributed by Stefan O'Rear, 24-Jan-2015.)
 |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( F  oF R G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
  x ) R ( G `  x ) ) ) )
 
Theoremoffres 6219 Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015.)
 |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( ( F  oF R G )  |`  D )  =  ( ( F  |`  D )  oF R ( G  |`  D )
 ) )
 
Theoremofmres 6220* Equivalent expressions for a restriction of the function operation map. Unlike  oF R which is a proper class,  (  oF R  |`  ( A  X.  B
) ) can be a set by ofmresex 6221, allowing it to be used as a function or structure argument. By ofmresval 6169, the restricted operation map values are the same as the original values, allowing theorems for  oF R to be reused. (Contributed by NM, 20-Oct-2014.)
 |-  (  oF R  |`  ( A  X.  B ) )  =  (
 f  e.  A ,  g  e.  B  |->  ( f  oF R g ) )
 
Theoremofmresex 6221 Existence of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   =>    |-  ( ph  ->  (  oF R  |`  ( A  X.  B ) )  e.  _V )
 
Theoremuchoice 6222* Principle of unique choice. This is also called non-choice. The name choice results in its similarity to something like acfun 7318 (with the key difference being the change of  E. to  E!) but unique choice in fact follows from the axiom of collection and our other axioms. This is somewhat similar to Corollary 3.9.2 of [HoTT], p. (varies) but is better described by the paragraph at the end of Section 3.9 which starts "A similar issue arises in set-theoretic mathematics". (Contributed by Jim Kingdon, 13-Sep-2025.)
 |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  E. f ( f  Fn  A  /\  A. x  e.  A  [. (
 f `  x )  /  y ]. ph )
 )
 
2.6.15  First and second members of an ordered pair
 
Syntaxc1st 6223 Extend the definition of a class to include the first member an ordered pair function.
 class  1st
 
Syntaxc2nd 6224 Extend the definition of a class to include the second member an ordered pair function.
 class  2nd
 
Definitiondf-1st 6225 Define a function that extracts the first member, or abscissa, of an ordered pair. Theorem op1st 6231 proves that it does this. For example, ( 1st `  <. 3 , 4  >.) = 3 . Equivalent to Definition 5.13 (i) of [Monk1] p. 52 (compare op1sta 5163 and op1stb 4524). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.)
 |- 
 1st  =  ( x  e.  _V  |->  U. dom  { x } )
 
Definitiondf-2nd 6226 Define a function that extracts the second member, or ordinate, of an ordered pair. Theorem op2nd 6232 proves that it does this. For example,  ( 2nd ` 
<. 3 , 4 
>.) = 4 . Equivalent to Definition 5.13 (ii) of [Monk1] p. 52 (compare op2nda 5166 and op2ndb 5165). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.)
 |- 
 2nd  =  ( x  e.  _V  |->  U. ran  { x } )
 
Theorem1stvalg 6227 The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( A  e.  _V  ->  ( 1st `  A )  =  U. dom  { A } )
 
Theorem2ndvalg 6228 The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( A  e.  _V  ->  ( 2nd `  A )  =  U. ran  { A } )
 
Theorem1st0 6229 The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
 |-  ( 1st `  (/) )  =  (/)
 
Theorem2nd0 6230 The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
 |-  ( 2nd `  (/) )  =  (/)
 
Theoremop1st 6231 Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( 1st `  <. A ,  B >. )  =  A
 
Theoremop2nd 6232 Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( 2nd `  <. A ,  B >. )  =  B
 
Theoremop1std 6233 Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( C  =  <. A ,  B >.  ->  ( 1st `  C )  =  A )
 
Theoremop2ndd 6234 Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( C  =  <. A ,  B >.  ->  ( 2nd `  C )  =  B )
 
Theoremop1stg 6235 Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 1st `  <. A ,  B >. )  =  A )
 
Theoremop2ndg 6236 Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 2nd `  <. A ,  B >. )  =  B )
 
Theoremot1stg 6237 Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 6237, ot2ndg 6238, ot3rdgg 6239.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( 1st `  ( 1st `  <. A ,  B ,  C >. ) )  =  A )
 
Theoremot2ndg 6238 Extract the second member of an ordered triple. (See ot1stg 6237 comment.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( 2nd `  ( 1st `  <. A ,  B ,  C >. ) )  =  B )
 
Theoremot3rdgg 6239 Extract the third member of an ordered triple. (See ot1stg 6237 comment.) (Contributed by NM, 3-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( 2nd `  <. A ,  B ,  C >. )  =  C )
 
Theorem1stval2 6240 Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
 |-  ( A  e.  ( _V  X.  _V )  ->  ( 1st `  A )  =  |^| |^| A )
 
Theorem2ndval2 6241 Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
 |-  ( A  e.  ( _V  X.  _V )  ->  ( 2nd `  A )  =  |^| |^| |^| `' { A } )
 
Theoremfo1st 6242 The  1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |- 
 1st : _V -onto-> _V
 
Theoremfo2nd 6243 The  2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |- 
 2nd : _V -onto-> _V
 
Theoremf1stres 6244 Mapping of a restriction of the 
1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) --> A
 
Theoremf2ndres 6245 Mapping of a restriction of the 
2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) --> B
 
Theoremfo1stresm 6246* Onto mapping of a restriction of the  1st (first member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
 |-  ( E. y  y  e.  B  ->  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> A )
 
Theoremfo2ndresm 6247* Onto mapping of a restriction of the  2nd (second member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
 |-  ( E. x  x  e.  A  ->  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> B )
 
Theorem1stcof 6248 Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.)
 |-  ( F : A --> ( B  X.  C ) 
 ->  ( 1st  o.  F ) : A --> B )
 
Theorem2ndcof 6249 Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.)
 |-  ( F : A --> ( B  X.  C ) 
 ->  ( 2nd  o.  F ) : A --> C )
 
Theoremxp1st 6250 Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( A  e.  ( B  X.  C )  ->  ( 1st `  A )  e.  B )
 
Theoremxp2nd 6251 Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( A  e.  ( B  X.  C )  ->  ( 2nd `  A )  e.  C )
 
Theorem1stexg 6252 Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
 |-  ( A  e.  V  ->  ( 1st `  A )  e.  _V )
 
Theorem2ndexg 6253 Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
 |-  ( A  e.  V  ->  ( 2nd `  A )  e.  _V )
 
Theoremelxp6 6254 Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5169. (Contributed by NM, 9-Oct-2004.)
 |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A ) >.  /\  (
 ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C ) ) )
 
Theoremelxp7 6255 Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5169. (Contributed by NM, 19-Aug-2006.)
 |-  ( A  e.  ( B  X.  C )  <->  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C ) ) )
 
Theoremoprssdmm 6256* Domain of closure of an operation. (Contributed by Jim Kingdon, 23-Oct-2023.)
 |-  ( ( ph  /\  u  e.  S )  ->  E. v  v  e.  u )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  ( ph  ->  Rel  F )   =>    |-  ( ph  ->  ( S  X.  S )  C_  dom  F )
 
Theoremeqopi 6257 Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( A  e.  ( V  X.  W ) 
 /\  ( ( 1st `  A )  =  B  /\  ( 2nd `  A )  =  C )
 )  ->  A  =  <. B ,  C >. )
 
Theoremxp2 6258* Representation of cross product based on ordered pair component functions. (Contributed by NM, 16-Sep-2006.)
 |-  ( A  X.  B )  =  { x  e.  ( _V  X.  _V )  |  ( ( 1st `  x )  e.  A  /\  ( 2nd `  x )  e.  B ) }
 
Theoremunielxp 6259 The membership relation for a cross product is inherited by union. (Contributed by NM, 16-Sep-2006.)
 |-  ( A  e.  ( B  X.  C )  ->  U. A  e.  U. ( B  X.  C ) )
 
Theorem1st2nd2 6260 Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.)
 |-  ( A  e.  ( B  X.  C )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A ) >. )
 
Theoremxpopth 6261 An ordered pair theorem for members of cross products. (Contributed by NM, 20-Jun-2007.)
 |-  ( ( A  e.  ( C  X.  D ) 
 /\  B  e.  ( R  X.  S ) ) 
 ->  ( ( ( 1st `  A )  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B ) )  <->  A  =  B ) )
 
Theoremeqop 6262 Two ways to express equality with an ordered pair. (Contributed by NM, 3-Sep-2007.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  e.  ( V  X.  W )  ->  ( A  =  <. B ,  C >.  <->  ( ( 1st `  A )  =  B  /\  ( 2nd `  A )  =  C )
 ) )
 
Theoremeqop2 6263 Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014.)
 |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  ( A  =  <. B ,  C >.  <->  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A )  =  B  /\  ( 2nd `  A )  =  C ) ) )
 
Theoremop1steq 6264* Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.)
 |-  ( A  e.  ( V  X.  W )  ->  ( ( 1st `  A )  =  B  <->  E. x  A  =  <. B ,  x >. ) )
 
Theorem2nd1st 6265 Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.)
 |-  ( A  e.  ( B  X.  C )  ->  U. `' { A }  =  <. ( 2nd `  A ) ,  ( 1st `  A ) >. )
 
Theorem1st2nd 6266 Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.)
 |-  ( ( Rel  B  /\  A  e.  B ) 
 ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A ) >. )
 
Theorem1stdm 6267 The first ordered pair component of a member of a relation belongs to the domain of the relation. (Contributed by NM, 17-Sep-2006.)
 |-  ( ( Rel  R  /\  A  e.  R ) 
 ->  ( 1st `  A )  e.  dom  R )
 
Theorem2ndrn 6268 The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.)
 |-  ( ( Rel  R  /\  A  e.  R ) 
 ->  ( 2nd `  A )  e.  ran  R )
 
Theorem1st2ndbr 6269 Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.)
 |-  ( ( Rel  B  /\  A  e.  B ) 
 ->  ( 1st `  A ) B ( 2nd `  A ) )
 
Theoremreleldm2 6270* Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.)
 |-  ( Rel  A  ->  ( B  e.  dom  A  <->  E. x  e.  A  ( 1st `  x )  =  B ) )
 
Theoremreldm 6271* An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.)
 |-  ( Rel  A  ->  dom 
 A  =  ran  ( x  e.  A  |->  ( 1st `  x ) ) )
 
Theoremsbcopeq1a 6272 Equality theorem for substitution of a class for an ordered pair (analog of sbceq1a 3007 that avoids the existential quantifiers of copsexg 4287). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( A  =  <. x ,  y >.  ->  ( [. ( 1st `  A )  /  x ]. [. ( 2nd `  A )  /  y ]. ph  <->  ph ) )
 
Theoremcsbopeq1a 6273 Equality theorem for substitution of a class  A for an ordered pair  <. x ,  y >. in  B (analog of csbeq1a 3101). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( A  =  <. x ,  y >.  ->  [_ ( 1st `  A )  /  x ]_ [_ ( 2nd `  A )  /  y ]_ B  =  B )
 
Theoremdfopab2 6274* A way to define an ordered-pair class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |- 
 { <. x ,  y >.  |  ph }  =  { z  e.  ( _V  X.  _V )  | 
 [. ( 1st `  z
 )  /  x ]. [. ( 2nd `  z )  /  y ]. ph }
 
Theoremdfoprab3s 6275* A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  ( w  e.  ( _V  X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) }
 
Theoremdfoprab3 6276* Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.)
 |-  ( w  =  <. x ,  y >.  ->  ( ph 
 <->  ps ) )   =>    |-  { <. w ,  z >.  |  ( w  e.  ( _V  X.  _V )  /\  ph ) }  =  { <. <. x ,  y >. ,  z >.  |  ps }
 
Theoremdfoprab4 6277* Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( w  =  <. x ,  y >.  ->  ( ph 
 <->  ps ) )   =>    |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
 
Theoremdfoprab4f 6278* Operation class abstraction expressed without existential quantifiers. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |- 
 F/ x ph   &    |-  F/ y ph   &    |-  ( w  =  <. x ,  y >.  ->  ( ph  <->  ps ) )   =>    |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
 
Theoremdfxp3 6279* Define the cross product of three classes. Compare df-xp 4680. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 3-Nov-2015.)
 |-  ( ( A  X.  B )  X.  C )  =  { <. <. x ,  y >. ,  z >.  |  ( x  e.  A  /\  y  e.  B  /\  z  e.  C ) }
 
Theoremelopabi 6280* A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.)
 |-  ( x  =  ( 1st `  A )  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  ( 2nd `  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( A  e.  {
 <. x ,  y >.  | 
 ph }  ->  ch )
 
Theoremeloprabi 6281* A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  ( x  =  ( 1st `  ( 1st `  A ) )  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  ( 2nd `  ( 1st `  A ) )  ->  ( ps  <->  ch ) )   &    |-  ( z  =  ( 2nd `  A )  ->  ( ch  <->  th ) )   =>    |-  ( A  e.  {
 <. <. x ,  y >. ,  z >.  |  ph } 
 ->  th )
 
Theoremmpomptsx 6282* Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016.)
 |-  ( x  e.  A ,  y  e.  B  |->  C )  =  (
 z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
 
Theoremmpompts 6283* Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Sep-2015.)
 |-  ( x  e.  A ,  y  e.  B  |->  C )  =  (
 z  e.  ( A  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
 
Theoremdmmpossx 6284* The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  dom  F  C_  U_ x  e.  A  ( { x }  X.  B )
 
Theoremfmpox 6285* Functionality, domain and codomain of a class given by the maps-to notation, where  B ( x ) is not constant but depends on  x. (Contributed by NM, 29-Dec-2014.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( A. x  e.  A  A. y  e.  B  C  e.  D  <->  F : U_ x  e.  A  ( { x }  X.  B ) --> D )
 
Theoremfmpo 6286* Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( A. x  e.  A  A. y  e.  B  C  e.  D  <->  F : ( A  X.  B ) --> D )
 
Theoremfnmpo 6287* Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  F  Fn  ( A  X.  B ) )
 
Theoremfnmpoi 6288* Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   &    |-  C  e.  _V   =>    |-  F  Fn  ( A  X.  B )
 
Theoremdmmpo 6289* Domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   &    |-  C  e.  _V   =>    |- 
 dom  F  =  ( A  X.  B )
 
Theoremmpofvex 6290* Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X ) 
 ->  ( R F S )  e.  _V )
 
Theoremmpofvexi 6291* Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   &    |-  C  e.  _V   &    |-  R  e.  _V   &    |-  S  e.  _V   =>    |-  ( R F S )  e.  _V
 
Theoremovmpoelrn 6292* An operation's value belongs to its range. (Contributed by AV, 27-Jan-2020.)
 |-  O  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( ( A. x  e.  A  A. y  e.  B  C  e.  M  /\  X  e.  A  /\  Y  e.  B )  ->  ( X O Y )  e.  M )
 
Theoremdmmpoga 6293* Domain of an operation given by the maps-to notation, closed form of dmmpo 6289. (Contributed by Alexander van der Vekens, 10-Feb-2019.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  dom  F  =  ( A  X.  B ) )
 
Theoremdmmpog 6294* Domain of an operation given by the maps-to notation, closed form of dmmpo 6289. Caution: This theorem is only valid in the very special case where the value of the mapping is a constant! (Contributed by Alexander van der Vekens, 1-Jun-2017.) (Proof shortened by AV, 10-Feb-2019.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( C  e.  V  ->  dom  F  =  ( A  X.  B ) )
 
Theoremmpoexxg 6295* Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  F  e.  _V )
 
Theoremmpoexg 6296* Existence of an operation class abstraction (special case). (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 1-Sep-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( ( A  e.  R  /\  B  e.  S )  ->  F  e.  _V )
 
Theoremmpoexga 6297* If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( x  e.  A ,  y  e.  B  |->  C )  e. 
 _V )
 
Theoremmpoexw 6298* Weak version of mpoex 6299 that holds without ax-coll 4158. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  D  e.  _V   &    |-  A. x  e.  A  A. y  e.  B  C  e.  D   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  e.  _V
 
Theoremmpoex 6299* If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  e.  _V
 
Theoremfnmpoovd 6300* A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.) (Revised by AV, 3-Jul-2022.)
 |-  ( ph  ->  M  Fn  ( A  X.  B ) )   &    |-  ( ( i  =  a  /\  j  =  b )  ->  D  =  C )   &    |-  ( ( ph  /\  i  e.  A  /\  j  e.  B )  ->  D  e.  U )   &    |-  ( ( ph  /\  a  e.  A  /\  b  e.  B )  ->  C  e.  V )   =>    |-  ( ph  ->  ( M  =  ( a  e.  A ,  b  e.  B  |->  C )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  D ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-15985
  Copyright terms: Public domain < Previous  Next >