| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > smoel | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| smoel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smodm 6358 |
. . . . 5
| |
| 2 | ordtr1 4424 |
. . . . . . 7
| |
| 3 | 2 | ancomsd 269 |
. . . . . 6
|
| 4 | 3 | expdimp 259 |
. . . . 5
|
| 5 | 1, 4 | sylan 283 |
. . . 4
|
| 6 | df-smo 6353 |
. . . . . 6
| |
| 7 | eleq1 2259 |
. . . . . . . . . . 11
| |
| 8 | fveq2 5561 |
. . . . . . . . . . . 12
| |
| 9 | 8 | eleq1d 2265 |
. . . . . . . . . . 11
|
| 10 | 7, 9 | imbi12d 234 |
. . . . . . . . . 10
|
| 11 | eleq2 2260 |
. . . . . . . . . . 11
| |
| 12 | fveq2 5561 |
. . . . . . . . . . . 12
| |
| 13 | 12 | eleq2d 2266 |
. . . . . . . . . . 11
|
| 14 | 11, 13 | imbi12d 234 |
. . . . . . . . . 10
|
| 15 | 10, 14 | rspc2v 2881 |
. . . . . . . . 9
|
| 16 | 15 | ancoms 268 |
. . . . . . . 8
|
| 17 | 16 | com12 30 |
. . . . . . 7
|
| 18 | 17 | 3ad2ant3 1022 |
. . . . . 6
|
| 19 | 6, 18 | sylbi 121 |
. . . . 5
|
| 20 | 19 | expdimp 259 |
. . . 4
|
| 21 | 5, 20 | syld 45 |
. . 3
|
| 22 | 21 | pm2.43d 50 |
. 2
|
| 23 | 22 | 3impia 1202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-tr 4133 df-iord 4402 df-iota 5220 df-fv 5267 df-smo 6353 |
| This theorem is referenced by: smoiun 6368 smoel2 6370 |
| Copyright terms: Public domain | W3C validator |