Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > smoel | Unicode version |
Description: If is less than then a strictly monotone function's value will be strictly less at than at . (Contributed by Andrew Salmon, 22-Nov-2011.) |
Ref | Expression |
---|---|
smoel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smodm 6270 | . . . . 5 | |
2 | ordtr1 4373 | . . . . . . 7 | |
3 | 2 | ancomsd 267 | . . . . . 6 |
4 | 3 | expdimp 257 | . . . . 5 |
5 | 1, 4 | sylan 281 | . . . 4 |
6 | df-smo 6265 | . . . . . 6 | |
7 | eleq1 2233 | . . . . . . . . . . 11 | |
8 | fveq2 5496 | . . . . . . . . . . . 12 | |
9 | 8 | eleq1d 2239 | . . . . . . . . . . 11 |
10 | 7, 9 | imbi12d 233 | . . . . . . . . . 10 |
11 | eleq2 2234 | . . . . . . . . . . 11 | |
12 | fveq2 5496 | . . . . . . . . . . . 12 | |
13 | 12 | eleq2d 2240 | . . . . . . . . . . 11 |
14 | 11, 13 | imbi12d 233 | . . . . . . . . . 10 |
15 | 10, 14 | rspc2v 2847 | . . . . . . . . 9 |
16 | 15 | ancoms 266 | . . . . . . . 8 |
17 | 16 | com12 30 | . . . . . . 7 |
18 | 17 | 3ad2ant3 1015 | . . . . . 6 |
19 | 6, 18 | sylbi 120 | . . . . 5 |
20 | 19 | expdimp 257 | . . . 4 |
21 | 5, 20 | syld 45 | . . 3 |
22 | 21 | pm2.43d 50 | . 2 |
23 | 22 | 3impia 1195 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wral 2448 word 4347 con0 4348 cdm 4611 wf 5194 cfv 5198 wsmo 6264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-tr 4088 df-iord 4351 df-iota 5160 df-fv 5206 df-smo 6265 |
This theorem is referenced by: smoiun 6280 smoel2 6282 |
Copyright terms: Public domain | W3C validator |