Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > smoel | Unicode version |
Description: If is less than then a strictly monotone function's value will be strictly less at than at . (Contributed by Andrew Salmon, 22-Nov-2011.) |
Ref | Expression |
---|---|
smoel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smodm 6238 | . . . . 5 | |
2 | ordtr1 4348 | . . . . . . 7 | |
3 | 2 | ancomsd 267 | . . . . . 6 |
4 | 3 | expdimp 257 | . . . . 5 |
5 | 1, 4 | sylan 281 | . . . 4 |
6 | df-smo 6233 | . . . . . 6 | |
7 | eleq1 2220 | . . . . . . . . . . 11 | |
8 | fveq2 5468 | . . . . . . . . . . . 12 | |
9 | 8 | eleq1d 2226 | . . . . . . . . . . 11 |
10 | 7, 9 | imbi12d 233 | . . . . . . . . . 10 |
11 | eleq2 2221 | . . . . . . . . . . 11 | |
12 | fveq2 5468 | . . . . . . . . . . . 12 | |
13 | 12 | eleq2d 2227 | . . . . . . . . . . 11 |
14 | 11, 13 | imbi12d 233 | . . . . . . . . . 10 |
15 | 10, 14 | rspc2v 2829 | . . . . . . . . 9 |
16 | 15 | ancoms 266 | . . . . . . . 8 |
17 | 16 | com12 30 | . . . . . . 7 |
18 | 17 | 3ad2ant3 1005 | . . . . . 6 |
19 | 6, 18 | sylbi 120 | . . . . 5 |
20 | 19 | expdimp 257 | . . . 4 |
21 | 5, 20 | syld 45 | . . 3 |
22 | 21 | pm2.43d 50 | . 2 |
23 | 22 | 3impia 1182 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 963 wceq 1335 wcel 2128 wral 2435 word 4322 con0 4323 cdm 4586 wf 5166 cfv 5170 wsmo 6232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-tr 4063 df-iord 4326 df-iota 5135 df-fv 5178 df-smo 6233 |
This theorem is referenced by: smoiun 6248 smoel2 6250 |
Copyright terms: Public domain | W3C validator |