| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > smoel | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| smoel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smodm 6400 |
. . . . 5
| |
| 2 | ordtr1 4453 |
. . . . . . 7
| |
| 3 | 2 | ancomsd 269 |
. . . . . 6
|
| 4 | 3 | expdimp 259 |
. . . . 5
|
| 5 | 1, 4 | sylan 283 |
. . . 4
|
| 6 | df-smo 6395 |
. . . . . 6
| |
| 7 | eleq1 2270 |
. . . . . . . . . . 11
| |
| 8 | fveq2 5599 |
. . . . . . . . . . . 12
| |
| 9 | 8 | eleq1d 2276 |
. . . . . . . . . . 11
|
| 10 | 7, 9 | imbi12d 234 |
. . . . . . . . . 10
|
| 11 | eleq2 2271 |
. . . . . . . . . . 11
| |
| 12 | fveq2 5599 |
. . . . . . . . . . . 12
| |
| 13 | 12 | eleq2d 2277 |
. . . . . . . . . . 11
|
| 14 | 11, 13 | imbi12d 234 |
. . . . . . . . . 10
|
| 15 | 10, 14 | rspc2v 2897 |
. . . . . . . . 9
|
| 16 | 15 | ancoms 268 |
. . . . . . . 8
|
| 17 | 16 | com12 30 |
. . . . . . 7
|
| 18 | 17 | 3ad2ant3 1023 |
. . . . . 6
|
| 19 | 6, 18 | sylbi 121 |
. . . . 5
|
| 20 | 19 | expdimp 259 |
. . . 4
|
| 21 | 5, 20 | syld 45 |
. . 3
|
| 22 | 21 | pm2.43d 50 |
. 2
|
| 23 | 22 | 3impia 1203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-tr 4159 df-iord 4431 df-iota 5251 df-fv 5298 df-smo 6395 |
| This theorem is referenced by: smoiun 6410 smoel2 6412 |
| Copyright terms: Public domain | W3C validator |