Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcimgf Unicode version

Theorem spcimgf 2769
 Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgf.1
spcimgf.2
spcimgf.3
Assertion
Ref Expression
spcimgf

Proof of Theorem spcimgf
StepHypRef Expression
1 spcimgf.2 . . 3
2 spcimgf.1 . . 3
31, 2spcimgft 2765 . 2
4 spcimgf.3 . 2
53, 4mpg 1428 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1330   wceq 1332  wnf 1437   wcel 1481  wnfc 2269 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691 This theorem is referenced by:  bj-nn0sucALT  13345
 Copyright terms: Public domain W3C validator