ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcimgf Unicode version

Theorem spcimgf 2806
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgf.1  |-  F/_ x A
spcimgf.2  |-  F/ x ps
spcimgf.3  |-  ( x  =  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
spcimgf  |-  ( A  e.  V  ->  ( A. x ph  ->  ps ) )

Proof of Theorem spcimgf
StepHypRef Expression
1 spcimgf.2 . . 3  |-  F/ x ps
2 spcimgf.1 . . 3  |-  F/_ x A
31, 2spcimgft 2802 . 2  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A  e.  V  ->  ( A. x ph  ->  ps ) ) )
4 spcimgf.3 . 2  |-  ( x  =  A  ->  ( ph  ->  ps ) )
53, 4mpg 1439 1  |-  ( A  e.  V  ->  ( A. x ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341    = wceq 1343   F/wnf 1448    e. wcel 2136   F/_wnfc 2295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by:  bj-nn0sucALT  13860
  Copyright terms: Public domain W3C validator