ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcimgf Unicode version

Theorem spcimgf 2853
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgf.1  |-  F/_ x A
spcimgf.2  |-  F/ x ps
spcimgf.3  |-  ( x  =  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
spcimgf  |-  ( A  e.  V  ->  ( A. x ph  ->  ps ) )

Proof of Theorem spcimgf
StepHypRef Expression
1 spcimgf.2 . . 3  |-  F/ x ps
2 spcimgf.1 . . 3  |-  F/_ x A
31, 2spcimgft 2849 . 2  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A  e.  V  ->  ( A. x ph  ->  ps ) ) )
4 spcimgf.3 . 2  |-  ( x  =  A  ->  ( ph  ->  ps ) )
53, 4mpg 1474 1  |-  ( A  e.  V  ->  ( A. x ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371    = wceq 1373   F/wnf 1483    e. wcel 2176   F/_wnfc 2335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774
This theorem is referenced by:  bj-nn0sucALT  15918
  Copyright terms: Public domain W3C validator