Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spcimgft | Unicode version |
Description: A closed version of spcimgf 2815. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
spcimgft.1 | |
spcimgft.2 |
Ref | Expression |
---|---|
spcimgft |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2746 | . 2 | |
2 | spcimgft.2 | . . . . 5 | |
3 | 2 | issetf 2742 | . . . 4 |
4 | exim 1597 | . . . 4 | |
5 | 3, 4 | biimtrid 152 | . . 3 |
6 | spcimgft.1 | . . . 4 | |
7 | 6 | 19.36-1 1671 | . . 3 |
8 | 5, 7 | syl6 33 | . 2 |
9 | 1, 8 | syl5 32 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1351 wceq 1353 wnf 1458 wex 1490 wcel 2146 wnfc 2304 cvv 2735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 |
This theorem is referenced by: spcgft 2812 spcimgf 2815 spcimdv 2819 |
Copyright terms: Public domain | W3C validator |