ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcimgft Unicode version

Theorem spcimgft 2806
Description: A closed version of spcimgf 2810. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgft.1  |-  F/ x ps
spcimgft.2  |-  F/_ x A
Assertion
Ref Expression
spcimgft  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A  e.  B  ->  ( A. x ph  ->  ps ) ) )

Proof of Theorem spcimgft
StepHypRef Expression
1 elex 2741 . 2  |-  ( A  e.  B  ->  A  e.  _V )
2 spcimgft.2 . . . . 5  |-  F/_ x A
32issetf 2737 . . . 4  |-  ( A  e.  _V  <->  E. x  x  =  A )
4 exim 1592 . . . 4  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( E. x  x  =  A  ->  E. x
( ph  ->  ps )
) )
53, 4syl5bi 151 . . 3  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A  e.  _V  ->  E. x ( ph  ->  ps ) ) )
6 spcimgft.1 . . . 4  |-  F/ x ps
7619.36-1 1666 . . 3  |-  ( E. x ( ph  ->  ps )  ->  ( A. x ph  ->  ps )
)
85, 7syl6 33 . 2  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A  e.  _V  ->  ( A. x ph  ->  ps ) ) )
91, 8syl5 32 1  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A  e.  B  ->  ( A. x ph  ->  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346    = wceq 1348   F/wnf 1453   E.wex 1485    e. wcel 2141   F/_wnfc 2299   _Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732
This theorem is referenced by:  spcgft  2807  spcimgf  2810  spcimdv  2814
  Copyright terms: Public domain W3C validator