ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcegft Unicode version

Theorem spcegft 2839
Description: A closed version of spcegf 2843. (Contributed by Jim Kingdon, 22-Jun-2018.)
Hypotheses
Ref Expression
spcimgft.1  |-  F/ x ps
spcimgft.2  |-  F/_ x A
Assertion
Ref Expression
spcegft  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  B  ->  ( ps  ->  E. x ph ) ) )

Proof of Theorem spcegft
StepHypRef Expression
1 biimpr 130 . . . 4  |-  ( (
ph 
<->  ps )  ->  ( ps  ->  ph ) )
21imim2i 12 . . 3  |-  ( ( x  =  A  -> 
( ph  <->  ps ) )  -> 
( x  =  A  ->  ( ps  ->  ph ) ) )
32alimi 1466 . 2  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  A. x
( x  =  A  ->  ( ps  ->  ph ) ) )
4 spcimgft.1 . . 3  |-  F/ x ps
5 spcimgft.2 . . 3  |-  F/_ x A
64, 5spcimegft 2838 . 2  |-  ( A. x ( x  =  A  ->  ( ps  ->  ph ) )  -> 
( A  e.  B  ->  ( ps  ->  E. x ph ) ) )
73, 6syl 14 1  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  B  ->  ( ps  ->  E. x ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362    = wceq 1364   F/wnf 1471   E.wex 1503    e. wcel 2164   F/_wnfc 2323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762
This theorem is referenced by:  spcegf  2843
  Copyright terms: Public domain W3C validator