ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcegft Unicode version

Theorem spcegft 2809
Description: A closed version of spcegf 2813. (Contributed by Jim Kingdon, 22-Jun-2018.)
Hypotheses
Ref Expression
spcimgft.1  |-  F/ x ps
spcimgft.2  |-  F/_ x A
Assertion
Ref Expression
spcegft  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  B  ->  ( ps  ->  E. x ph ) ) )

Proof of Theorem spcegft
StepHypRef Expression
1 biimpr 129 . . . 4  |-  ( (
ph 
<->  ps )  ->  ( ps  ->  ph ) )
21imim2i 12 . . 3  |-  ( ( x  =  A  -> 
( ph  <->  ps ) )  -> 
( x  =  A  ->  ( ps  ->  ph ) ) )
32alimi 1448 . 2  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  A. x
( x  =  A  ->  ( ps  ->  ph ) ) )
4 spcimgft.1 . . 3  |-  F/ x ps
5 spcimgft.2 . . 3  |-  F/_ x A
64, 5spcimegft 2808 . 2  |-  ( A. x ( x  =  A  ->  ( ps  ->  ph ) )  -> 
( A  e.  B  ->  ( ps  ->  E. x ph ) ) )
73, 6syl 14 1  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  B  ->  ( ps  ->  E. x ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346    = wceq 1348   F/wnf 1453   E.wex 1485    e. wcel 2141   F/_wnfc 2299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732
This theorem is referenced by:  spcegf  2813
  Copyright terms: Public domain W3C validator