ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spsbcd Unicode version

Theorem spsbcd 3010
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1797 and rspsbc 3080. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypotheses
Ref Expression
spsbcd.1  |-  ( ph  ->  A  e.  V )
spsbcd.2  |-  ( ph  ->  A. x ps )
Assertion
Ref Expression
spsbcd  |-  ( ph  ->  [. A  /  x ]. ps )

Proof of Theorem spsbcd
StepHypRef Expression
1 spsbcd.1 . 2  |-  ( ph  ->  A  e.  V )
2 spsbcd.2 . 2  |-  ( ph  ->  A. x ps )
3 spsbc 3009 . 2  |-  ( A  e.  V  ->  ( A. x ps  ->  [. A  /  x ]. ps )
)
41, 2, 3sylc 62 1  |-  ( ph  ->  [. A  /  x ]. ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1370    e. wcel 2175   [.wsbc 2997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-v 2773  df-sbc 2998
This theorem is referenced by:  ovmpodxf  6070
  Copyright terms: Public domain W3C validator