ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spsbcd Unicode version

Theorem spsbcd 2973
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1773 and rspsbc 3043. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypotheses
Ref Expression
spsbcd.1  |-  ( ph  ->  A  e.  V )
spsbcd.2  |-  ( ph  ->  A. x ps )
Assertion
Ref Expression
spsbcd  |-  ( ph  ->  [. A  /  x ]. ps )

Proof of Theorem spsbcd
StepHypRef Expression
1 spsbcd.1 . 2  |-  ( ph  ->  A  e.  V )
2 spsbcd.2 . 2  |-  ( ph  ->  A. x ps )
3 spsbc 2972 . 2  |-  ( A  e.  V  ->  ( A. x ps  ->  [. A  /  x ]. ps )
)
41, 2, 3sylc 62 1  |-  ( ph  ->  [. A  /  x ]. ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1351    e. wcel 2146   [.wsbc 2960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-v 2737  df-sbc 2961
This theorem is referenced by:  ovmpodxf  5990
  Copyright terms: Public domain W3C validator