ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spsbcd Unicode version

Theorem spsbcd 3041
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1821 and rspsbc 3112. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypotheses
Ref Expression
spsbcd.1  |-  ( ph  ->  A  e.  V )
spsbcd.2  |-  ( ph  ->  A. x ps )
Assertion
Ref Expression
spsbcd  |-  ( ph  ->  [. A  /  x ]. ps )

Proof of Theorem spsbcd
StepHypRef Expression
1 spsbcd.1 . 2  |-  ( ph  ->  A  e.  V )
2 spsbcd.2 . 2  |-  ( ph  ->  A. x ps )
3 spsbc 3040 . 2  |-  ( A  e.  V  ->  ( A. x ps  ->  [. A  /  x ]. ps )
)
41, 2, 3sylc 62 1  |-  ( ph  ->  [. A  /  x ]. ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1393    e. wcel 2200   [.wsbc 3028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801  df-sbc 3029
This theorem is referenced by:  ovmpodxf  6129
  Copyright terms: Public domain W3C validator