![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spsbcd | GIF version |
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1786 and rspsbc 3068. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
spsbcd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
spsbcd.2 | ⊢ (𝜑 → ∀𝑥𝜓) |
Ref | Expression |
---|---|
spsbcd | ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbcd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | spsbcd.2 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) | |
3 | spsbc 2997 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜓 → [𝐴 / 𝑥]𝜓)) | |
4 | 1, 2, 3 | sylc 62 | 1 ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 ∈ wcel 2164 [wsbc 2985 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 df-sbc 2986 |
This theorem is referenced by: ovmpodxf 6044 |
Copyright terms: Public domain | W3C validator |