Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcth | Unicode version |
Description: A substitution into a theorem remains true (when is a set). (Contributed by NM, 5-Nov-2005.) |
Ref | Expression |
---|---|
sbcth.1 |
Ref | Expression |
---|---|
sbcth |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcth.1 | . . 3 | |
2 | 1 | ax-gen 1437 | . 2 |
3 | spsbc 2962 | . 2 | |
4 | 2, 3 | mpi 15 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1341 wcel 2136 wsbc 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 df-sbc 2952 |
This theorem is referenced by: rabrsndc 3644 iota4an 5172 |
Copyright terms: Public domain | W3C validator |