ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpodxf Unicode version

Theorem ovmpodxf 6048
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovmpodx.1  |-  ( ph  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
ovmpodx.2  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
ovmpodx.3  |-  ( (
ph  /\  x  =  A )  ->  D  =  L )
ovmpodx.4  |-  ( ph  ->  A  e.  C )
ovmpodx.5  |-  ( ph  ->  B  e.  L )
ovmpodx.6  |-  ( ph  ->  S  e.  X )
ovmpodxf.px  |-  F/ x ph
ovmpodxf.py  |-  F/ y
ph
ovmpodxf.ay  |-  F/_ y A
ovmpodxf.bx  |-  F/_ x B
ovmpodxf.sx  |-  F/_ x S
ovmpodxf.sy  |-  F/_ y S
Assertion
Ref Expression
ovmpodxf  |-  ( ph  ->  ( A F B )  =  S )
Distinct variable groups:    x, y    x, A    y, B
Allowed substitution hints:    ph( x, y)    A( y)    B( x)    C( x, y)    D( x, y)    R( x, y)    S( x, y)    F( x, y)    L( x, y)    X( x, y)

Proof of Theorem ovmpodxf
StepHypRef Expression
1 ovmpodx.1 . . 3  |-  ( ph  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
21oveqd 5939 . 2  |-  ( ph  ->  ( A F B )  =  ( A ( x  e.  C ,  y  e.  D  |->  R ) B ) )
3 ovmpodx.4 . . . 4  |-  ( ph  ->  A  e.  C )
4 ovmpodxf.px . . . . 5  |-  F/ x ph
5 ovmpodx.5 . . . . . 6  |-  ( ph  ->  B  e.  L )
6 ovmpodxf.py . . . . . . 7  |-  F/ y
ph
7 eqid 2196 . . . . . . . . 9  |-  ( x  e.  C ,  y  e.  D  |->  R )  =  ( x  e.  C ,  y  e.  D  |->  R )
87ovmpt4g 6045 . . . . . . . 8  |-  ( ( x  e.  C  /\  y  e.  D  /\  R  e.  _V )  ->  ( x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R )
98a1i 9 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R ) )
106, 9alrimi 1536 . . . . . 6  |-  ( ph  ->  A. y ( ( x  e.  C  /\  y  e.  D  /\  R  e.  _V )  ->  ( x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R ) )
115, 10spsbcd 3002 . . . . 5  |-  ( ph  ->  [. B  /  y ]. ( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R ) )
124, 11alrimi 1536 . . . 4  |-  ( ph  ->  A. x [. B  /  y ]. (
( x  e.  C  /\  y  e.  D  /\  R  e.  _V )  ->  ( x ( x  e.  C , 
y  e.  D  |->  R ) y )  =  R ) )
133, 12spsbcd 3002 . . 3  |-  ( ph  ->  [. A  /  x ]. [. B  /  y ]. ( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R ) )
145adantr 276 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  B  e.  L )
15 simplr 528 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  x  =  A )
163ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  A  e.  C )
1715, 16eqeltrd 2273 . . . . . . 7  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  x  e.  C )
185ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  B  e.  L )
19 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  y  =  B )
20 ovmpodx.3 . . . . . . . . 9  |-  ( (
ph  /\  x  =  A )  ->  D  =  L )
2120adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  D  =  L )
2218, 19, 213eltr4d 2280 . . . . . . 7  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  y  e.  D )
23 ovmpodx.2 . . . . . . . . 9  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
2423anassrs 400 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  R  =  S )
25 ovmpodx.6 . . . . . . . . . 10  |-  ( ph  ->  S  e.  X )
26 elex 2774 . . . . . . . . . 10  |-  ( S  e.  X  ->  S  e.  _V )
2725, 26syl 14 . . . . . . . . 9  |-  ( ph  ->  S  e.  _V )
2827ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  S  e.  _V )
2924, 28eqeltrd 2273 . . . . . . 7  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  R  e.  _V )
30 biimt 241 . . . . . . 7  |-  ( ( x  e.  C  /\  y  e.  D  /\  R  e.  _V )  ->  ( ( x ( x  e.  C , 
y  e.  D  |->  R ) y )  =  R  <->  ( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R ) ) )
3117, 22, 29, 30syl3anc 1249 . . . . . 6  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  (
( x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R  <-> 
( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R ) ) )
3215, 19oveq12d 5940 . . . . . . 7  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  ( A ( x  e.  C ,  y  e.  D  |->  R ) B ) )
3332, 24eqeq12d 2211 . . . . . 6  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  (
( x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R  <-> 
( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S ) )
3431, 33bitr3d 190 . . . . 5  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  (
( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R )  <-> 
( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S ) )
35 ovmpodxf.ay . . . . . . 7  |-  F/_ y A
3635nfeq2 2351 . . . . . 6  |-  F/ y  x  =  A
376, 36nfan 1579 . . . . 5  |-  F/ y ( ph  /\  x  =  A )
38 nfmpo2 5990 . . . . . . . 8  |-  F/_ y
( x  e.  C ,  y  e.  D  |->  R )
39 nfcv 2339 . . . . . . . 8  |-  F/_ y B
4035, 38, 39nfov 5952 . . . . . . 7  |-  F/_ y
( A ( x  e.  C ,  y  e.  D  |->  R ) B )
41 ovmpodxf.sy . . . . . . 7  |-  F/_ y S
4240, 41nfeq 2347 . . . . . 6  |-  F/ y ( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S
4342a1i 9 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  F/ y ( A ( x  e.  C , 
y  e.  D  |->  R ) B )  =  S )
4414, 34, 37, 43sbciedf 3025 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  ( [. B  /  y ]. ( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R )  <-> 
( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S ) )
45 nfcv 2339 . . . . . . 7  |-  F/_ x A
46 nfmpo1 5989 . . . . . . 7  |-  F/_ x
( x  e.  C ,  y  e.  D  |->  R )
47 ovmpodxf.bx . . . . . . 7  |-  F/_ x B
4845, 46, 47nfov 5952 . . . . . 6  |-  F/_ x
( A ( x  e.  C ,  y  e.  D  |->  R ) B )
49 ovmpodxf.sx . . . . . 6  |-  F/_ x S
5048, 49nfeq 2347 . . . . 5  |-  F/ x
( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S
5150a1i 9 . . . 4  |-  ( ph  ->  F/ x ( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S )
523, 44, 4, 51sbciedf 3025 . . 3  |-  ( ph  ->  ( [. A  /  x ]. [. B  / 
y ]. ( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R )  <-> 
( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S ) )
5313, 52mpbid 147 . 2  |-  ( ph  ->  ( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S )
542, 53eqtrd 2229 1  |-  ( ph  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   F/wnf 1474    e. wcel 2167   F/_wnfc 2326   _Vcvv 2763   [.wsbc 2989  (class class class)co 5922    e. cmpo 5924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927
This theorem is referenced by:  ovmpodx  6049  elovmporab  6123  elovmporab1w  6124  mpoxopoveq  6298
  Copyright terms: Public domain W3C validator