Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ovmpodxf | Unicode version |
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
ovmpodx.1 | |
ovmpodx.2 | |
ovmpodx.3 | |
ovmpodx.4 | |
ovmpodx.5 | |
ovmpodx.6 | |
ovmpodxf.px | |
ovmpodxf.py | |
ovmpodxf.ay | |
ovmpodxf.bx | |
ovmpodxf.sx | |
ovmpodxf.sy |
Ref | Expression |
---|---|
ovmpodxf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpodx.1 | . . 3 | |
2 | 1 | oveqd 5870 | . 2 |
3 | ovmpodx.4 | . . . 4 | |
4 | ovmpodxf.px | . . . . 5 | |
5 | ovmpodx.5 | . . . . . 6 | |
6 | ovmpodxf.py | . . . . . . 7 | |
7 | eqid 2170 | . . . . . . . . 9 | |
8 | 7 | ovmpt4g 5975 | . . . . . . . 8 |
9 | 8 | a1i 9 | . . . . . . 7 |
10 | 6, 9 | alrimi 1515 | . . . . . 6 |
11 | 5, 10 | spsbcd 2967 | . . . . 5 |
12 | 4, 11 | alrimi 1515 | . . . 4 |
13 | 3, 12 | spsbcd 2967 | . . 3 |
14 | 5 | adantr 274 | . . . . 5 |
15 | simplr 525 | . . . . . . . 8 | |
16 | 3 | ad2antrr 485 | . . . . . . . 8 |
17 | 15, 16 | eqeltrd 2247 | . . . . . . 7 |
18 | 5 | ad2antrr 485 | . . . . . . . 8 |
19 | simpr 109 | . . . . . . . 8 | |
20 | ovmpodx.3 | . . . . . . . . 9 | |
21 | 20 | adantr 274 | . . . . . . . 8 |
22 | 18, 19, 21 | 3eltr4d 2254 | . . . . . . 7 |
23 | ovmpodx.2 | . . . . . . . . 9 | |
24 | 23 | anassrs 398 | . . . . . . . 8 |
25 | ovmpodx.6 | . . . . . . . . . 10 | |
26 | elex 2741 | . . . . . . . . . 10 | |
27 | 25, 26 | syl 14 | . . . . . . . . 9 |
28 | 27 | ad2antrr 485 | . . . . . . . 8 |
29 | 24, 28 | eqeltrd 2247 | . . . . . . 7 |
30 | biimt 240 | . . . . . . 7 | |
31 | 17, 22, 29, 30 | syl3anc 1233 | . . . . . 6 |
32 | 15, 19 | oveq12d 5871 | . . . . . . 7 |
33 | 32, 24 | eqeq12d 2185 | . . . . . 6 |
34 | 31, 33 | bitr3d 189 | . . . . 5 |
35 | ovmpodxf.ay | . . . . . . 7 | |
36 | 35 | nfeq2 2324 | . . . . . 6 |
37 | 6, 36 | nfan 1558 | . . . . 5 |
38 | nfmpo2 5921 | . . . . . . . 8 | |
39 | nfcv 2312 | . . . . . . . 8 | |
40 | 35, 38, 39 | nfov 5883 | . . . . . . 7 |
41 | ovmpodxf.sy | . . . . . . 7 | |
42 | 40, 41 | nfeq 2320 | . . . . . 6 |
43 | 42 | a1i 9 | . . . . 5 |
44 | 14, 34, 37, 43 | sbciedf 2990 | . . . 4 |
45 | nfcv 2312 | . . . . . . 7 | |
46 | nfmpo1 5920 | . . . . . . 7 | |
47 | ovmpodxf.bx | . . . . . . 7 | |
48 | 45, 46, 47 | nfov 5883 | . . . . . 6 |
49 | ovmpodxf.sx | . . . . . 6 | |
50 | 48, 49 | nfeq 2320 | . . . . 5 |
51 | 50 | a1i 9 | . . . 4 |
52 | 3, 44, 4, 51 | sbciedf 2990 | . . 3 |
53 | 13, 52 | mpbid 146 | . 2 |
54 | 2, 53 | eqtrd 2203 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wnf 1453 wcel 2141 wnfc 2299 cvv 2730 wsbc 2955 (class class class)co 5853 cmpo 5855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 |
This theorem is referenced by: ovmpodx 5979 mpoxopoveq 6219 |
Copyright terms: Public domain | W3C validator |