| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ovmpodxf | Unicode version | ||
| Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| ovmpodx.1 | 
 | 
| ovmpodx.2 | 
 | 
| ovmpodx.3 | 
 | 
| ovmpodx.4 | 
 | 
| ovmpodx.5 | 
 | 
| ovmpodx.6 | 
 | 
| ovmpodxf.px | 
 | 
| ovmpodxf.py | 
 | 
| ovmpodxf.ay | 
 | 
| ovmpodxf.bx | 
 | 
| ovmpodxf.sx | 
 | 
| ovmpodxf.sy | 
 | 
| Ref | Expression | 
|---|---|
| ovmpodxf | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ovmpodx.1 | 
. . 3
 | |
| 2 | 1 | oveqd 5939 | 
. 2
 | 
| 3 | ovmpodx.4 | 
. . . 4
 | |
| 4 | ovmpodxf.px | 
. . . . 5
 | |
| 5 | ovmpodx.5 | 
. . . . . 6
 | |
| 6 | ovmpodxf.py | 
. . . . . . 7
 | |
| 7 | eqid 2196 | 
. . . . . . . . 9
 | |
| 8 | 7 | ovmpt4g 6045 | 
. . . . . . . 8
 | 
| 9 | 8 | a1i 9 | 
. . . . . . 7
 | 
| 10 | 6, 9 | alrimi 1536 | 
. . . . . 6
 | 
| 11 | 5, 10 | spsbcd 3002 | 
. . . . 5
 | 
| 12 | 4, 11 | alrimi 1536 | 
. . . 4
 | 
| 13 | 3, 12 | spsbcd 3002 | 
. . 3
 | 
| 14 | 5 | adantr 276 | 
. . . . 5
 | 
| 15 | simplr 528 | 
. . . . . . . 8
 | |
| 16 | 3 | ad2antrr 488 | 
. . . . . . . 8
 | 
| 17 | 15, 16 | eqeltrd 2273 | 
. . . . . . 7
 | 
| 18 | 5 | ad2antrr 488 | 
. . . . . . . 8
 | 
| 19 | simpr 110 | 
. . . . . . . 8
 | |
| 20 | ovmpodx.3 | 
. . . . . . . . 9
 | |
| 21 | 20 | adantr 276 | 
. . . . . . . 8
 | 
| 22 | 18, 19, 21 | 3eltr4d 2280 | 
. . . . . . 7
 | 
| 23 | ovmpodx.2 | 
. . . . . . . . 9
 | |
| 24 | 23 | anassrs 400 | 
. . . . . . . 8
 | 
| 25 | ovmpodx.6 | 
. . . . . . . . . 10
 | |
| 26 | elex 2774 | 
. . . . . . . . . 10
 | |
| 27 | 25, 26 | syl 14 | 
. . . . . . . . 9
 | 
| 28 | 27 | ad2antrr 488 | 
. . . . . . . 8
 | 
| 29 | 24, 28 | eqeltrd 2273 | 
. . . . . . 7
 | 
| 30 | biimt 241 | 
. . . . . . 7
 | |
| 31 | 17, 22, 29, 30 | syl3anc 1249 | 
. . . . . 6
 | 
| 32 | 15, 19 | oveq12d 5940 | 
. . . . . . 7
 | 
| 33 | 32, 24 | eqeq12d 2211 | 
. . . . . 6
 | 
| 34 | 31, 33 | bitr3d 190 | 
. . . . 5
 | 
| 35 | ovmpodxf.ay | 
. . . . . . 7
 | |
| 36 | 35 | nfeq2 2351 | 
. . . . . 6
 | 
| 37 | 6, 36 | nfan 1579 | 
. . . . 5
 | 
| 38 | nfmpo2 5990 | 
. . . . . . . 8
 | |
| 39 | nfcv 2339 | 
. . . . . . . 8
 | |
| 40 | 35, 38, 39 | nfov 5952 | 
. . . . . . 7
 | 
| 41 | ovmpodxf.sy | 
. . . . . . 7
 | |
| 42 | 40, 41 | nfeq 2347 | 
. . . . . 6
 | 
| 43 | 42 | a1i 9 | 
. . . . 5
 | 
| 44 | 14, 34, 37, 43 | sbciedf 3025 | 
. . . 4
 | 
| 45 | nfcv 2339 | 
. . . . . . 7
 | |
| 46 | nfmpo1 5989 | 
. . . . . . 7
 | |
| 47 | ovmpodxf.bx | 
. . . . . . 7
 | |
| 48 | 45, 46, 47 | nfov 5952 | 
. . . . . 6
 | 
| 49 | ovmpodxf.sx | 
. . . . . 6
 | |
| 50 | 48, 49 | nfeq 2347 | 
. . . . 5
 | 
| 51 | 50 | a1i 9 | 
. . . 4
 | 
| 52 | 3, 44, 4, 51 | sbciedf 3025 | 
. . 3
 | 
| 53 | 13, 52 | mpbid 147 | 
. 2
 | 
| 54 | 2, 53 | eqtrd 2229 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 | 
| This theorem is referenced by: ovmpodx 6049 elovmporab 6123 elovmporab1w 6124 mpoxopoveq 6298 | 
| Copyright terms: Public domain | W3C validator |