Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspsbc | Unicode version |
Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 1763 and spsbc 2962. See also rspsbca 3034 and rspcsbela . (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
rspsbc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvralsv 2708 | . 2 | |
2 | dfsbcq2 2954 | . . 3 | |
3 | 2 | rspcv 2826 | . 2 |
4 | 1, 3 | syl5bi 151 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wsb 1750 wcel 2136 wral 2444 wsbc 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-sbc 2952 |
This theorem is referenced by: rspsbca 3034 sbcth2 3038 rspcsbela 3104 riota5f 5822 riotass2 5824 fzrevral 10040 fprodcllemf 11554 ctiunctlemf 12371 |
Copyright terms: Public domain | W3C validator |