ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspsbc Unicode version

Theorem rspsbc 3085
Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 1799 and spsbc 3014. See also rspsbca 3086 and rspcsbela . (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
rspsbc  |-  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  [. A  /  x ]. ph ) )
Distinct variable group:    x, B
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem rspsbc
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cbvralsv 2755 . 2  |-  ( A. x  e.  B  ph  <->  A. y  e.  B  [ y  /  x ] ph )
2 dfsbcq2 3005 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ]. ph ) )
32rspcv 2877 . 2  |-  ( A  e.  B  ->  ( A. y  e.  B  [ y  /  x ] ph  ->  [. A  /  x ]. ph ) )
41, 3biimtrid 152 1  |-  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  [. A  /  x ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   [wsb 1786    e. wcel 2177   A.wral 2485   [.wsbc 3002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-sbc 3003
This theorem is referenced by:  rspsbca  3086  sbcth2  3090  rspcsbela  3157  riota5f  5937  riotass2  5939  fzrevral  10247  fprodcllemf  11999  ctiunctlemf  12884
  Copyright terms: Public domain W3C validator