ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspsbc Unicode version

Theorem rspsbc 3037
Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 1768 and spsbc 2966. See also rspsbca 3038 and rspcsbela . (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
rspsbc  |-  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  [. A  /  x ]. ph ) )
Distinct variable group:    x, B
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem rspsbc
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cbvralsv 2712 . 2  |-  ( A. x  e.  B  ph  <->  A. y  e.  B  [ y  /  x ] ph )
2 dfsbcq2 2958 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ]. ph ) )
32rspcv 2830 . 2  |-  ( A  e.  B  ->  ( A. y  e.  B  [ y  /  x ] ph  ->  [. A  /  x ]. ph ) )
41, 3syl5bi 151 1  |-  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  [. A  /  x ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   [wsb 1755    e. wcel 2141   A.wral 2448   [.wsbc 2955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-sbc 2956
This theorem is referenced by:  rspsbca  3038  sbcth2  3042  rspcsbela  3108  riota5f  5833  riotass2  5835  fzrevral  10061  fprodcllemf  11576  ctiunctlemf  12393
  Copyright terms: Public domain W3C validator