| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspsbc | Unicode version | ||
| Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 1799 and spsbc 3014. See also rspsbca 3086 and rspcsbela . (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspsbc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralsv 2755 |
. 2
| |
| 2 | dfsbcq2 3005 |
. . 3
| |
| 3 | 2 | rspcv 2877 |
. 2
|
| 4 | 1, 3 | biimtrid 152 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-sbc 3003 |
| This theorem is referenced by: rspsbca 3086 sbcth2 3090 rspcsbela 3157 riota5f 5937 riotass2 5939 fzrevral 10247 fprodcllemf 11999 ctiunctlemf 12884 |
| Copyright terms: Public domain | W3C validator |