| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspsbc | Unicode version | ||
| Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 1821 and spsbc 3040. See also rspsbca 3113 and rspcsbela . (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspsbc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralsv 2781 |
. 2
| |
| 2 | dfsbcq2 3031 |
. . 3
| |
| 3 | 2 | rspcv 2903 |
. 2
|
| 4 | 1, 3 | biimtrid 152 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-sbc 3029 |
| This theorem is referenced by: rspsbca 3113 sbcth2 3117 rspcsbela 3184 riota5f 5980 riotass2 5982 fzrevral 10297 fprodcllemf 12119 ctiunctlemf 13004 |
| Copyright terms: Public domain | W3C validator |