| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rspsbc | Unicode version | ||
| Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 1789 and spsbc 3001. See also rspsbca 3073 and rspcsbela . (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| rspsbc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvralsv 2745 | 
. 2
 | |
| 2 | dfsbcq2 2992 | 
. . 3
 | |
| 3 | 2 | rspcv 2864 | 
. 2
 | 
| 4 | 1, 3 | biimtrid 152 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-sbc 2990 | 
| This theorem is referenced by: rspsbca 3073 sbcth2 3077 rspcsbela 3144 riota5f 5902 riotass2 5904 fzrevral 10180 fprodcllemf 11778 ctiunctlemf 12655 | 
| Copyright terms: Public domain | W3C validator |