ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdifss Unicode version

Theorem ssdifss 3294
Description: Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.)
Assertion
Ref Expression
ssdifss  |-  ( A 
C_  B  ->  ( A  \  C )  C_  B )

Proof of Theorem ssdifss
StepHypRef Expression
1 difss 3290 . 2  |-  ( A 
\  C )  C_  A
2 sstr 3192 . 2  |-  ( ( ( A  \  C
)  C_  A  /\  A  C_  B )  -> 
( A  \  C
)  C_  B )
31, 2mpan 424 1  |-  ( A 
C_  B  ->  ( A  \  C )  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \ cdif 3154    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170
This theorem is referenced by:  ssdifssd  3302
  Copyright terms: Public domain W3C validator