ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstr Unicode version

Theorem sstr 3178
Description: Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.)
Assertion
Ref Expression
sstr  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )

Proof of Theorem sstr
StepHypRef Expression
1 sstr2 3177 . 2  |-  ( A 
C_  B  ->  ( B  C_  C  ->  A  C_  C ) )
21imp 124 1  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    C_ wss 3144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-in 3150  df-ss 3157
This theorem is referenced by:  sstrd  3180  sylan9ss  3183  ssdifss  3280  uneqin  3401  ssindif0im  3497  undifss  3518  ssrnres  5086  relrelss  5170  fco  5396  fssres  5406  ssimaex  5593  tpostpos2  6284  smores  6311  pmss12g  6693  fidcenumlemr  6972  iccsupr  9984  fimaxq  10825  fsum2d  11461  fsumabs  11491  fprod2d  11649  tgval  12733  tgvalex  12734  subrngintm  13520  subrgintm  13551  ssnei  14048  opnneiss  14055  restdis  14081  tgcnp  14106  blssexps  14326  blssex  14327  mopni3  14381  metss  14391  metcnp3  14408  tgioo  14443  cncfmptid  14480
  Copyright terms: Public domain W3C validator