![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sstr | Unicode version |
Description: Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
Ref | Expression |
---|---|
sstr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3186 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | imp 124 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: sstrd 3189 sylan9ss 3192 ssdifss 3289 uneqin 3410 ssindif0im 3506 undifss 3527 ssrnres 5108 relrelss 5192 fco 5419 fssres 5429 ssimaex 5618 tpostpos2 6318 smores 6345 pmss12g 6729 fidcenumlemr 7014 iccsupr 10032 fimaxq 10898 fsum2d 11578 fsumabs 11608 fprod2d 11766 tgval 12873 tgvalex 12874 subrngintm 13708 subrgintm 13739 ssnei 14319 opnneiss 14326 restdis 14352 tgcnp 14377 blssexps 14597 blssex 14598 mopni3 14652 metss 14662 metcnp3 14679 tgioo 14714 cncfmptid 14751 plyss 14884 |
Copyright terms: Public domain | W3C validator |