ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstr Unicode version

Theorem sstr 3205
Description: Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.)
Assertion
Ref Expression
sstr  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )

Proof of Theorem sstr
StepHypRef Expression
1 sstr2 3204 . 2  |-  ( A 
C_  B  ->  ( B  C_  C  ->  A  C_  C ) )
21imp 124 1  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    C_ wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3176  df-ss 3183
This theorem is referenced by:  sstrd  3207  sylan9ss  3210  ssdifss  3307  uneqin  3428  ssindif0im  3524  undifss  3545  ssrnres  5134  relrelss  5218  fco  5451  fssres  5463  ssimaex  5653  tpostpos2  6364  smores  6391  pmss12g  6775  fidcenumlemr  7072  iccsupr  10108  fimaxq  10994  fsum2d  11821  fsumabs  11851  fprod2d  12009  tgval  13169  tgvalex  13170  subrngintm  14049  subrgintm  14080  ssnei  14698  opnneiss  14705  restdis  14731  tgcnp  14756  blssexps  14976  blssex  14977  mopni3  15031  metss  15041  metcnp3  15058  tgioo  15101  cncfmptid  15144  dvmptfsum  15272  plyss  15285
  Copyright terms: Public domain W3C validator