ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstr Unicode version

Theorem sstr 3155
Description: Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.)
Assertion
Ref Expression
sstr  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )

Proof of Theorem sstr
StepHypRef Expression
1 sstr2 3154 . 2  |-  ( A 
C_  B  ->  ( B  C_  C  ->  A  C_  C ) )
21imp 123 1  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134
This theorem is referenced by:  sstrd  3157  sylan9ss  3160  ssdifss  3257  uneqin  3378  ssindif0im  3474  undifss  3495  ssrnres  5053  relrelss  5137  fco  5363  fssres  5373  ssimaex  5557  tpostpos2  6244  smores  6271  pmss12g  6653  fidcenumlemr  6932  iccsupr  9923  fimaxq  10762  fsum2d  11398  fsumabs  11428  fprod2d  11586  tgval  12843  tgvalex  12844  ssnei  12945  opnneiss  12952  restdis  12978  tgcnp  13003  blssexps  13223  blssex  13224  mopni3  13278  metss  13288  metcnp3  13305  tgioo  13340  cncfmptid  13377
  Copyright terms: Public domain W3C validator