| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstr | Unicode version | ||
| Description: Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
| Ref | Expression |
|---|---|
| sstr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3204 |
. 2
| |
| 2 | 1 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: sstrd 3207 sylan9ss 3210 ssdifss 3307 uneqin 3428 ssindif0im 3524 undifss 3545 ssrnres 5134 relrelss 5218 fco 5451 fssres 5463 ssimaex 5653 tpostpos2 6364 smores 6391 pmss12g 6775 fidcenumlemr 7072 iccsupr 10108 fimaxq 10994 fsum2d 11821 fsumabs 11851 fprod2d 12009 tgval 13169 tgvalex 13170 subrngintm 14049 subrgintm 14080 ssnei 14698 opnneiss 14705 restdis 14731 tgcnp 14756 blssexps 14976 blssex 14977 mopni3 15031 metss 15041 metcnp3 15058 tgioo 15101 cncfmptid 15144 dvmptfsum 15272 plyss 15285 |
| Copyright terms: Public domain | W3C validator |