ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstr Unicode version

Theorem sstr 3164
Description: Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.)
Assertion
Ref Expression
sstr  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )

Proof of Theorem sstr
StepHypRef Expression
1 sstr2 3163 . 2  |-  ( A 
C_  B  ->  ( B  C_  C  ->  A  C_  C ) )
21imp 124 1  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    C_ wss 3130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3136  df-ss 3143
This theorem is referenced by:  sstrd  3166  sylan9ss  3169  ssdifss  3266  uneqin  3387  ssindif0im  3483  undifss  3504  ssrnres  5072  relrelss  5156  fco  5382  fssres  5392  ssimaex  5578  tpostpos2  6266  smores  6293  pmss12g  6675  fidcenumlemr  6954  iccsupr  9966  fimaxq  10807  fsum2d  11443  fsumabs  11473  fprod2d  11631  tgval  12711  tgvalex  12712  subrgintm  13364  ssnei  13654  opnneiss  13661  restdis  13687  tgcnp  13712  blssexps  13932  blssex  13933  mopni3  13987  metss  13997  metcnp3  14014  tgioo  14049  cncfmptid  14086
  Copyright terms: Public domain W3C validator