| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstr | Unicode version | ||
| Description: Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
| Ref | Expression |
|---|---|
| sstr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3191 |
. 2
| |
| 2 | 1 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sstrd 3194 sylan9ss 3197 ssdifss 3294 uneqin 3415 ssindif0im 3511 undifss 3532 ssrnres 5113 relrelss 5197 fco 5426 fssres 5436 ssimaex 5625 tpostpos2 6332 smores 6359 pmss12g 6743 fidcenumlemr 7030 iccsupr 10058 fimaxq 10936 fsum2d 11617 fsumabs 11647 fprod2d 11805 tgval 12964 tgvalex 12965 subrngintm 13844 subrgintm 13875 ssnei 14471 opnneiss 14478 restdis 14504 tgcnp 14529 blssexps 14749 blssex 14750 mopni3 14804 metss 14814 metcnp3 14831 tgioo 14874 cncfmptid 14917 dvmptfsum 15045 plyss 15058 |
| Copyright terms: Public domain | W3C validator |