| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstr | Unicode version | ||
| Description: Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
| Ref | Expression |
|---|---|
| sstr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3191 |
. 2
| |
| 2 | 1 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sstrd 3194 sylan9ss 3197 ssdifss 3294 uneqin 3415 ssindif0im 3511 undifss 3532 ssrnres 5113 relrelss 5197 fco 5426 fssres 5436 ssimaex 5625 tpostpos2 6332 smores 6359 pmss12g 6743 fidcenumlemr 7030 iccsupr 10060 fimaxq 10938 fsum2d 11619 fsumabs 11649 fprod2d 11807 tgval 12966 tgvalex 12967 subrngintm 13846 subrgintm 13877 ssnei 14495 opnneiss 14502 restdis 14528 tgcnp 14553 blssexps 14773 blssex 14774 mopni3 14828 metss 14838 metcnp3 14855 tgioo 14898 cncfmptid 14941 dvmptfsum 15069 plyss 15082 |
| Copyright terms: Public domain | W3C validator |