ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstr Unicode version

Theorem sstr 3232
Description: Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.)
Assertion
Ref Expression
sstr  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )

Proof of Theorem sstr
StepHypRef Expression
1 sstr2 3231 . 2  |-  ( A 
C_  B  ->  ( B  C_  C  ->  A  C_  C ) )
21imp 124 1  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  sstrd  3234  sylan9ss  3237  ssdifss  3334  uneqin  3455  ssindif0im  3551  undifss  3572  ssrnres  5170  relrelss  5254  fco  5488  fssres  5500  ssimaex  5694  tpostpos2  6409  smores  6436  pmss12g  6820  fidcenumlemr  7118  iccsupr  10158  fimaxq  11044  fsum2d  11941  fsumabs  11971  fprod2d  12129  tgval  13290  tgvalex  13291  subrngintm  14170  subrgintm  14201  ssnei  14819  opnneiss  14826  restdis  14852  tgcnp  14877  blssexps  15097  blssex  15098  mopni3  15152  metss  15162  metcnp3  15179  tgioo  15222  cncfmptid  15265  dvmptfsum  15393  plyss  15406
  Copyright terms: Public domain W3C validator