| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstr | Unicode version | ||
| Description: Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
| Ref | Expression |
|---|---|
| sstr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3231 |
. 2
| |
| 2 | 1 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sstrd 3234 sylan9ss 3237 ssdifss 3334 uneqin 3455 ssindif0im 3551 undifss 3572 ssrnres 5170 relrelss 5254 fco 5488 fssres 5500 ssimaex 5694 tpostpos2 6409 smores 6436 pmss12g 6820 fidcenumlemr 7118 iccsupr 10158 fimaxq 11044 fsum2d 11941 fsumabs 11971 fprod2d 12129 tgval 13290 tgvalex 13291 subrngintm 14170 subrgintm 14201 ssnei 14819 opnneiss 14826 restdis 14852 tgcnp 14877 blssexps 15097 blssex 15098 mopni3 15152 metss 15162 metcnp3 15179 tgioo 15222 cncfmptid 15265 dvmptfsum 15393 plyss 15406 |
| Copyright terms: Public domain | W3C validator |