ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstr Unicode version

Theorem sstr 3150
Description: Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.)
Assertion
Ref Expression
sstr  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )

Proof of Theorem sstr
StepHypRef Expression
1 sstr2 3149 . 2  |-  ( A 
C_  B  ->  ( B  C_  C  ->  A  C_  C ) )
21imp 123 1  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by:  sstrd  3152  sylan9ss  3155  ssdifss  3252  uneqin  3373  ssindif0im  3468  undifss  3489  ssrnres  5046  relrelss  5130  fco  5353  fssres  5363  ssimaex  5547  tpostpos2  6233  smores  6260  pmss12g  6641  fidcenumlemr  6920  iccsupr  9902  fimaxq  10740  fsum2d  11376  fsumabs  11406  fprod2d  11564  tgval  12689  tgvalex  12690  ssnei  12791  opnneiss  12798  restdis  12824  tgcnp  12849  blssexps  13069  blssex  13070  mopni3  13124  metss  13134  metcnp3  13151  tgioo  13186  cncfmptid  13223
  Copyright terms: Public domain W3C validator