Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ddifnel | Unicode version |
Description: Double complement under universal class. The hypothesis corresponds to stability of membership in , which is weaker than decidability (see dcstab 839). Actually, the conclusion is a characterization of stability of membership in a class (see ddifstab 3259) . Exercise 4.10(s) of [Mendelson] p. 231, but with an additional hypothesis. For a version without a hypothesis, but which only states that is a subset of , see ddifss 3365. (Contributed by Jim Kingdon, 21-Jul-2018.) |
Ref | Expression |
---|---|
ddifnel.1 |
Ref | Expression |
---|---|
ddifnel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ddifnel.1 | . . . 4 | |
2 | 1 | adantl 275 | . . 3 |
3 | elndif 3251 | . . . 4 | |
4 | vex 2733 | . . . 4 | |
5 | 3, 4 | jctil 310 | . . 3 |
6 | 2, 5 | impbii 125 | . 2 |
7 | 6 | difeqri 3247 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1348 wcel 2141 cvv 2730 cdif 3118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |