ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ddifnel Unicode version

Theorem ddifnel 3253
Description: Double complement under universal class. The hypothesis corresponds to stability of membership in 
A, which is weaker than decidability (see dcstab 834). Actually, the conclusion is a characterization of stability of membership in a class (see ddifstab 3254) . Exercise 4.10(s) of [Mendelson] p. 231, but with an additional hypothesis. For a version without a hypothesis, but which only states that  A is a subset of  _V  \  ( _V  \  A ), see ddifss 3360. (Contributed by Jim Kingdon, 21-Jul-2018.)
Hypothesis
Ref Expression
ddifnel.1  |-  ( -.  x  e.  ( _V 
\  A )  ->  x  e.  A )
Assertion
Ref Expression
ddifnel  |-  ( _V 
\  ( _V  \  A ) )  =  A
Distinct variable group:    x, A

Proof of Theorem ddifnel
StepHypRef Expression
1 ddifnel.1 . . . 4  |-  ( -.  x  e.  ( _V 
\  A )  ->  x  e.  A )
21adantl 275 . . 3  |-  ( ( x  e.  _V  /\  -.  x  e.  ( _V  \  A ) )  ->  x  e.  A
)
3 elndif 3246 . . . 4  |-  ( x  e.  A  ->  -.  x  e.  ( _V  \  A ) )
4 vex 2729 . . . 4  |-  x  e. 
_V
53, 4jctil 310 . . 3  |-  ( x  e.  A  ->  (
x  e.  _V  /\  -.  x  e.  ( _V  \  A ) ) )
62, 5impbii 125 . 2  |-  ( ( x  e.  _V  /\  -.  x  e.  ( _V  \  A ) )  <-> 
x  e.  A )
76difeqri 3242 1  |-  ( _V 
\  ( _V  \  A ) )  =  A
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726    \ cdif 3113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator