ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difss Unicode version

Theorem difss 3262
Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
difss  |-  ( A 
\  B )  C_  A

Proof of Theorem difss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eldifi 3258 . 2  |-  ( x  e.  ( A  \  B )  ->  x  e.  A )
21ssriv 3160 1  |-  ( A 
\  B )  C_  A
Colors of variables: wff set class
Syntax hints:    \ cdif 3127    C_ wss 3130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-dif 3132  df-in 3136  df-ss 3143
This theorem is referenced by:  difssd  3263  difss2  3264  ssdifss  3266  0dif  3495  undif1ss  3498  undifabs  3500  inundifss  3501  undifss  3504  unidif  3842  iunxdif2  3936  difexg  4145  exmid1stab  4209  reldif  4747  cnvdif  5036  resdif  5484  fndmdif  5622  swoer  6563  swoord1  6564  swoord2  6565  phplem2  6853  phpm  6865  unfiin  6925  sbthlem2  6957  sbthlemi4  6959  sbthlemi5  6960  difinfinf  7100  pinn  7308  niex  7311  dmaddpi  7324  dmmulpi  7325  lerelxr  8020  fisumss  11400  fprodssdc  11598  structcnvcnv  12478  strleund  12562  strleun  12563  strle1g  12565  discld  13639
  Copyright terms: Public domain W3C validator