| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > difss | Unicode version | ||
| Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| difss | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eldifi 3285 | 
. 2
 | |
| 2 | 1 | ssriv 3187 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: difssd 3290 difss2 3291 ssdifss 3293 0dif 3522 undif1ss 3525 undifabs 3527 inundifss 3528 undifss 3531 unidif 3871 iunxdif2 3965 difexg 4174 exmid1stab 4241 reldif 4783 cnvdif 5076 resdif 5526 fndmdif 5667 swoer 6620 swoord1 6621 swoord2 6622 phplem2 6914 phpm 6926 unfiin 6987 sbthlem2 7024 sbthlemi4 7026 sbthlemi5 7027 difinfinf 7167 pinn 7376 niex 7379 dmaddpi 7392 dmmulpi 7393 lerelxr 8089 fisumss 11557 fprodssdc 11755 structcnvcnv 12694 strleund 12781 strleun 12782 strle1g 12784 discld 14372 | 
| Copyright terms: Public domain | W3C validator |