ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difss Unicode version

Theorem difss 3299
Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
difss  |-  ( A 
\  B )  C_  A

Proof of Theorem difss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eldifi 3295 . 2  |-  ( x  e.  ( A  \  B )  ->  x  e.  A )
21ssriv 3197 1  |-  ( A 
\  B )  C_  A
Colors of variables: wff set class
Syntax hints:    \ cdif 3163    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179
This theorem is referenced by:  difssd  3300  difss2  3301  ssdifss  3303  0dif  3532  undif1ss  3535  undifabs  3537  inundifss  3538  undifss  3541  unidif  3882  iunxdif2  3976  difexg  4185  exmid1stab  4252  reldif  4795  cnvdif  5089  resdif  5544  fndmdif  5685  swoer  6648  swoord1  6649  swoord2  6650  phplem2  6950  phpm  6962  unfiin  7023  sbthlem2  7060  sbthlemi4  7062  sbthlemi5  7063  difinfinf  7203  pinn  7422  niex  7425  dmaddpi  7438  dmmulpi  7439  lerelxr  8135  fisumss  11703  fprodssdc  11901  structcnvcnv  12848  strleund  12935  strleun  12936  strle1g  12938  discld  14608
  Copyright terms: Public domain W3C validator