| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difss | Unicode version | ||
| Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| difss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 3326 |
. 2
| |
| 2 | 1 | ssriv 3228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 |
| This theorem is referenced by: difssd 3331 difss2 3332 ssdifss 3334 0dif 3563 undif1ss 3566 undifabs 3568 inundifss 3569 undifss 3572 unidif 3920 iunxdif2 4014 difexg 4225 exmid1stab 4292 reldif 4839 cnvdif 5135 resdif 5594 fndmdif 5740 swoer 6708 swoord1 6709 swoord2 6710 phplem2 7014 phpm 7027 unfiin 7088 sbthlem2 7125 sbthlemi4 7127 sbthlemi5 7128 difinfinf 7268 pinn 7496 niex 7499 dmaddpi 7512 dmmulpi 7513 lerelxr 8209 fisumss 11903 fprodssdc 12101 structcnvcnv 13048 strleund 13136 strleun 13137 strle1g 13139 discld 14810 |
| Copyright terms: Public domain | W3C validator |