ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difss Unicode version

Theorem difss 3289
Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
difss  |-  ( A 
\  B )  C_  A

Proof of Theorem difss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eldifi 3285 . 2  |-  ( x  e.  ( A  \  B )  ->  x  e.  A )
21ssriv 3187 1  |-  ( A 
\  B )  C_  A
Colors of variables: wff set class
Syntax hints:    \ cdif 3154    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170
This theorem is referenced by:  difssd  3290  difss2  3291  ssdifss  3293  0dif  3522  undif1ss  3525  undifabs  3527  inundifss  3528  undifss  3531  unidif  3871  iunxdif2  3965  difexg  4174  exmid1stab  4241  reldif  4783  cnvdif  5076  resdif  5526  fndmdif  5667  swoer  6620  swoord1  6621  swoord2  6622  phplem2  6914  phpm  6926  unfiin  6987  sbthlem2  7024  sbthlemi4  7026  sbthlemi5  7027  difinfinf  7167  pinn  7376  niex  7379  dmaddpi  7392  dmmulpi  7393  lerelxr  8089  fisumss  11557  fprodssdc  11755  structcnvcnv  12694  strleund  12781  strleun  12782  strle1g  12784  discld  14372
  Copyright terms: Public domain W3C validator