![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > difss | Unicode version |
Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
difss |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3281 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ssriv 3183 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-in 3159 df-ss 3166 |
This theorem is referenced by: difssd 3286 difss2 3287 ssdifss 3289 0dif 3518 undif1ss 3521 undifabs 3523 inundifss 3524 undifss 3527 unidif 3867 iunxdif2 3961 difexg 4170 exmid1stab 4237 reldif 4779 cnvdif 5072 resdif 5522 fndmdif 5663 swoer 6615 swoord1 6616 swoord2 6617 phplem2 6909 phpm 6921 unfiin 6982 sbthlem2 7017 sbthlemi4 7019 sbthlemi5 7020 difinfinf 7160 pinn 7369 niex 7372 dmaddpi 7385 dmmulpi 7386 lerelxr 8082 fisumss 11535 fprodssdc 11733 structcnvcnv 12634 strleund 12721 strleun 12722 strle1g 12724 discld 14304 |
Copyright terms: Public domain | W3C validator |