ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difss Unicode version

Theorem difss 3286
Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
difss  |-  ( A 
\  B )  C_  A

Proof of Theorem difss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eldifi 3282 . 2  |-  ( x  e.  ( A  \  B )  ->  x  e.  A )
21ssriv 3184 1  |-  ( A 
\  B )  C_  A
Colors of variables: wff set class
Syntax hints:    \ cdif 3151    C_ wss 3154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3156  df-in 3160  df-ss 3167
This theorem is referenced by:  difssd  3287  difss2  3288  ssdifss  3290  0dif  3519  undif1ss  3522  undifabs  3524  inundifss  3525  undifss  3528  unidif  3868  iunxdif2  3962  difexg  4171  exmid1stab  4238  reldif  4780  cnvdif  5073  resdif  5523  fndmdif  5664  swoer  6617  swoord1  6618  swoord2  6619  phplem2  6911  phpm  6923  unfiin  6984  sbthlem2  7019  sbthlemi4  7021  sbthlemi5  7022  difinfinf  7162  pinn  7371  niex  7374  dmaddpi  7387  dmmulpi  7388  lerelxr  8084  fisumss  11538  fprodssdc  11736  structcnvcnv  12637  strleund  12724  strleun  12725  strle1g  12727  discld  14315
  Copyright terms: Public domain W3C validator