| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difss | Unicode version | ||
| Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| difss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 3303 |
. 2
| |
| 2 | 1 | ssriv 3205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 df-in 3180 df-ss 3187 |
| This theorem is referenced by: difssd 3308 difss2 3309 ssdifss 3311 0dif 3540 undif1ss 3543 undifabs 3545 inundifss 3546 undifss 3549 unidif 3896 iunxdif2 3990 difexg 4201 exmid1stab 4268 reldif 4813 cnvdif 5108 resdif 5566 fndmdif 5708 swoer 6671 swoord1 6672 swoord2 6673 phplem2 6975 phpm 6988 unfiin 7049 sbthlem2 7086 sbthlemi4 7088 sbthlemi5 7089 difinfinf 7229 pinn 7457 niex 7460 dmaddpi 7473 dmmulpi 7474 lerelxr 8170 fisumss 11818 fprodssdc 12016 structcnvcnv 12963 strleund 13050 strleun 13051 strle1g 13053 discld 14723 |
| Copyright terms: Public domain | W3C validator |