| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difss | Unicode version | ||
| Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| difss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 3295 |
. 2
| |
| 2 | 1 | ssriv 3197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-in 3172 df-ss 3179 |
| This theorem is referenced by: difssd 3300 difss2 3301 ssdifss 3303 0dif 3532 undif1ss 3535 undifabs 3537 inundifss 3538 undifss 3541 unidif 3882 iunxdif2 3976 difexg 4185 exmid1stab 4252 reldif 4795 cnvdif 5089 resdif 5544 fndmdif 5685 swoer 6648 swoord1 6649 swoord2 6650 phplem2 6950 phpm 6962 unfiin 7023 sbthlem2 7060 sbthlemi4 7062 sbthlemi5 7063 difinfinf 7203 pinn 7422 niex 7425 dmaddpi 7438 dmmulpi 7439 lerelxr 8135 fisumss 11703 fprodssdc 11901 structcnvcnv 12848 strleund 12935 strleun 12936 strle1g 12938 discld 14608 |
| Copyright terms: Public domain | W3C validator |