![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > difss | Unicode version |
Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
difss |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3269 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ssriv 3171 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-dif 3143 df-in 3147 df-ss 3154 |
This theorem is referenced by: difssd 3274 difss2 3275 ssdifss 3277 0dif 3506 undif1ss 3509 undifabs 3511 inundifss 3512 undifss 3515 unidif 3853 iunxdif2 3947 difexg 4156 exmid1stab 4220 reldif 4758 cnvdif 5047 resdif 5495 fndmdif 5634 swoer 6576 swoord1 6577 swoord2 6578 phplem2 6866 phpm 6878 unfiin 6938 sbthlem2 6970 sbthlemi4 6972 sbthlemi5 6973 difinfinf 7113 pinn 7321 niex 7324 dmaddpi 7337 dmmulpi 7338 lerelxr 8033 fisumss 11413 fprodssdc 11611 structcnvcnv 12491 strleund 12576 strleun 12577 strle1g 12579 discld 13907 |
Copyright terms: Public domain | W3C validator |