ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difss Unicode version

Theorem difss 3330
Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
difss  |-  ( A 
\  B )  C_  A

Proof of Theorem difss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eldifi 3326 . 2  |-  ( x  e.  ( A  \  B )  ->  x  e.  A )
21ssriv 3228 1  |-  ( A 
\  B )  C_  A
Colors of variables: wff set class
Syntax hints:    \ cdif 3194    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210
This theorem is referenced by:  difssd  3331  difss2  3332  ssdifss  3334  0dif  3563  undif1ss  3566  undifabs  3568  inundifss  3569  undifss  3572  unidif  3920  iunxdif2  4014  difexg  4225  exmid1stab  4292  reldif  4839  cnvdif  5135  resdif  5594  fndmdif  5740  swoer  6708  swoord1  6709  swoord2  6710  phplem2  7014  phpm  7027  unfiin  7088  sbthlem2  7125  sbthlemi4  7127  sbthlemi5  7128  difinfinf  7268  pinn  7496  niex  7499  dmaddpi  7512  dmmulpi  7513  lerelxr  8209  fisumss  11903  fprodssdc  12101  structcnvcnv  13048  strleund  13136  strleun  13137  strle1g  13139  discld  14810
  Copyright terms: Public domain W3C validator