ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difss Unicode version

Theorem difss 3273
Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
difss  |-  ( A 
\  B )  C_  A

Proof of Theorem difss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eldifi 3269 . 2  |-  ( x  e.  ( A  \  B )  ->  x  e.  A )
21ssriv 3171 1  |-  ( A 
\  B )  C_  A
Colors of variables: wff set class
Syntax hints:    \ cdif 3138    C_ wss 3141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-dif 3143  df-in 3147  df-ss 3154
This theorem is referenced by:  difssd  3274  difss2  3275  ssdifss  3277  0dif  3506  undif1ss  3509  undifabs  3511  inundifss  3512  undifss  3515  unidif  3853  iunxdif2  3947  difexg  4156  exmid1stab  4220  reldif  4758  cnvdif  5047  resdif  5495  fndmdif  5634  swoer  6576  swoord1  6577  swoord2  6578  phplem2  6866  phpm  6878  unfiin  6938  sbthlem2  6970  sbthlemi4  6972  sbthlemi5  6973  difinfinf  7113  pinn  7321  niex  7324  dmaddpi  7337  dmmulpi  7338  lerelxr  8033  fisumss  11413  fprodssdc  11611  structcnvcnv  12491  strleund  12576  strleun  12577  strle1g  12579  discld  13907
  Copyright terms: Public domain W3C validator